Proof of Theorem resasplit
Step | Hyp | Ref
| Expression |
1 | | fnresdm 6551 |
. . . 4
⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) |
2 | | fnresdm 6551 |
. . . 4
⊢ (𝐺 Fn 𝐵 → (𝐺 ↾ 𝐵) = 𝐺) |
3 | | uneq12 4092 |
. . . 4
⊢ (((𝐹 ↾ 𝐴) = 𝐹 ∧ (𝐺 ↾ 𝐵) = 𝐺) → ((𝐹 ↾ 𝐴) ∪ (𝐺 ↾ 𝐵)) = (𝐹 ∪ 𝐺)) |
4 | 1, 2, 3 | syl2an 596 |
. . 3
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → ((𝐹 ↾ 𝐴) ∪ (𝐺 ↾ 𝐵)) = (𝐹 ∪ 𝐺)) |
5 | 4 | 3adant3 1131 |
. 2
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐹 ↾ 𝐴) ∪ (𝐺 ↾ 𝐵)) = (𝐹 ∪ 𝐺)) |
6 | | inundif 4412 |
. . . . . . . 8
⊢ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) = 𝐴 |
7 | 6 | reseq2i 5888 |
. . . . . . 7
⊢ (𝐹 ↾ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵))) = (𝐹 ↾ 𝐴) |
8 | | resundi 5905 |
. . . . . . 7
⊢ (𝐹 ↾ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵))) = ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐹 ↾ (𝐴 ∖ 𝐵))) |
9 | 7, 8 | eqtr3i 2768 |
. . . . . 6
⊢ (𝐹 ↾ 𝐴) = ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐹 ↾ (𝐴 ∖ 𝐵))) |
10 | | incom 4135 |
. . . . . . . . . 10
⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) |
11 | 10 | uneq1i 4093 |
. . . . . . . . 9
⊢ ((𝐴 ∩ 𝐵) ∪ (𝐵 ∖ 𝐴)) = ((𝐵 ∩ 𝐴) ∪ (𝐵 ∖ 𝐴)) |
12 | | inundif 4412 |
. . . . . . . . 9
⊢ ((𝐵 ∩ 𝐴) ∪ (𝐵 ∖ 𝐴)) = 𝐵 |
13 | 11, 12 | eqtri 2766 |
. . . . . . . 8
⊢ ((𝐴 ∩ 𝐵) ∪ (𝐵 ∖ 𝐴)) = 𝐵 |
14 | 13 | reseq2i 5888 |
. . . . . . 7
⊢ (𝐺 ↾ ((𝐴 ∩ 𝐵) ∪ (𝐵 ∖ 𝐴))) = (𝐺 ↾ 𝐵) |
15 | | resundi 5905 |
. . . . . . 7
⊢ (𝐺 ↾ ((𝐴 ∩ 𝐵) ∪ (𝐵 ∖ 𝐴))) = ((𝐺 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴))) |
16 | 14, 15 | eqtr3i 2768 |
. . . . . 6
⊢ (𝐺 ↾ 𝐵) = ((𝐺 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴))) |
17 | 9, 16 | uneq12i 4095 |
. . . . 5
⊢ ((𝐹 ↾ 𝐴) ∪ (𝐺 ↾ 𝐵)) = (((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐹 ↾ (𝐴 ∖ 𝐵))) ∪ ((𝐺 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))) |
18 | | simp3 1137 |
. . . . . . 7
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) |
19 | 18 | uneq1d 4096 |
. . . . . 6
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴))) = ((𝐺 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))) |
20 | 19 | uneq2d 4097 |
. . . . 5
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → (((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐹 ↾ (𝐴 ∖ 𝐵))) ∪ ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))) = (((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐹 ↾ (𝐴 ∖ 𝐵))) ∪ ((𝐺 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴))))) |
21 | 17, 20 | eqtr4id 2797 |
. . . 4
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐹 ↾ 𝐴) ∪ (𝐺 ↾ 𝐵)) = (((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐹 ↾ (𝐴 ∖ 𝐵))) ∪ ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴))))) |
22 | | un4 4103 |
. . . 4
⊢ (((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐹 ↾ (𝐴 ∖ 𝐵))) ∪ ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))) = (((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐹 ↾ (𝐴 ∩ 𝐵))) ∪ ((𝐹 ↾ (𝐴 ∖ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))) |
23 | 21, 22 | eqtrdi 2794 |
. . 3
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐹 ↾ 𝐴) ∪ (𝐺 ↾ 𝐵)) = (((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐹 ↾ (𝐴 ∩ 𝐵))) ∪ ((𝐹 ↾ (𝐴 ∖ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴))))) |
24 | | unidm 4086 |
. . . 4
⊢ ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐹 ↾ (𝐴 ∩ 𝐵))) = (𝐹 ↾ (𝐴 ∩ 𝐵)) |
25 | 24 | uneq1i 4093 |
. . 3
⊢ (((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ (𝐹 ↾ (𝐴 ∩ 𝐵))) ∪ ((𝐹 ↾ (𝐴 ∖ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))) = ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ ((𝐹 ↾ (𝐴 ∖ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴)))) |
26 | 23, 25 | eqtrdi 2794 |
. 2
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐹 ↾ 𝐴) ∪ (𝐺 ↾ 𝐵)) = ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ ((𝐹 ↾ (𝐴 ∖ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴))))) |
27 | 5, 26 | eqtr3d 2780 |
1
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → (𝐹 ∪ 𝐺) = ((𝐹 ↾ (𝐴 ∩ 𝐵)) ∪ ((𝐹 ↾ (𝐴 ∖ 𝐵)) ∪ (𝐺 ↾ (𝐵 ∖ 𝐴))))) |