MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resasplit Structured version   Visualization version   GIF version

Theorem resasplit 6762
Description: If two functions agree on their common domain, express their union as a union of three functions with pairwise disjoint domains. (Contributed by Stefan O'Rear, 9-Oct-2014.)
Assertion
Ref Expression
resasplit ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹𝐺) = ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))))

Proof of Theorem resasplit
StepHypRef Expression
1 fnresdm 6670 . . . 4 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
2 fnresdm 6670 . . . 4 (𝐺 Fn 𝐵 → (𝐺𝐵) = 𝐺)
3 uneq12 4159 . . . 4 (((𝐹𝐴) = 𝐹 ∧ (𝐺𝐵) = 𝐺) → ((𝐹𝐴) ∪ (𝐺𝐵)) = (𝐹𝐺))
41, 2, 3syl2an 597 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → ((𝐹𝐴) ∪ (𝐺𝐵)) = (𝐹𝐺))
543adant3 1133 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹𝐴) ∪ (𝐺𝐵)) = (𝐹𝐺))
6 inundif 4479 . . . . . . . 8 ((𝐴𝐵) ∪ (𝐴𝐵)) = 𝐴
76reseq2i 5979 . . . . . . 7 (𝐹 ↾ ((𝐴𝐵) ∪ (𝐴𝐵))) = (𝐹𝐴)
8 resundi 5996 . . . . . . 7 (𝐹 ↾ ((𝐴𝐵) ∪ (𝐴𝐵))) = ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵)))
97, 8eqtr3i 2763 . . . . . 6 (𝐹𝐴) = ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵)))
10 incom 4202 . . . . . . . . . 10 (𝐴𝐵) = (𝐵𝐴)
1110uneq1i 4160 . . . . . . . . 9 ((𝐴𝐵) ∪ (𝐵𝐴)) = ((𝐵𝐴) ∪ (𝐵𝐴))
12 inundif 4479 . . . . . . . . 9 ((𝐵𝐴) ∪ (𝐵𝐴)) = 𝐵
1311, 12eqtri 2761 . . . . . . . 8 ((𝐴𝐵) ∪ (𝐵𝐴)) = 𝐵
1413reseq2i 5979 . . . . . . 7 (𝐺 ↾ ((𝐴𝐵) ∪ (𝐵𝐴))) = (𝐺𝐵)
15 resundi 5996 . . . . . . 7 (𝐺 ↾ ((𝐴𝐵) ∪ (𝐵𝐴))) = ((𝐺 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))
1614, 15eqtr3i 2763 . . . . . 6 (𝐺𝐵) = ((𝐺 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))
179, 16uneq12i 4162 . . . . 5 ((𝐹𝐴) ∪ (𝐺𝐵)) = (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵))) ∪ ((𝐺 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))))
18 simp3 1139 . . . . . . 7 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵)))
1918uneq1d 4163 . . . . . 6 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))) = ((𝐺 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))))
2019uneq2d 4164 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵))) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))) = (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵))) ∪ ((𝐺 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))))
2117, 20eqtr4id 2792 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹𝐴) ∪ (𝐺𝐵)) = (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵))) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))))
22 un4 4170 . . . 4 (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵))) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))) = (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵))) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))))
2321, 22eqtrdi 2789 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹𝐴) ∪ (𝐺𝐵)) = (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵))) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))))
24 unidm 4153 . . . 4 ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵))) = (𝐹 ↾ (𝐴𝐵))
2524uneq1i 4160 . . 3 (((𝐹 ↾ (𝐴𝐵)) ∪ (𝐹 ↾ (𝐴𝐵))) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))) = ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴))))
2623, 25eqtrdi 2789 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹𝐴) ∪ (𝐺𝐵)) = ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))))
275, 26eqtr3d 2775 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹𝐺) = ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1088   = wceq 1542  cdif 3946  cun 3947  cin 3948  cres 5679   Fn wfn 6539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-xp 5683  df-rel 5684  df-dm 5687  df-res 5689  df-fun 6546  df-fn 6547
This theorem is referenced by:  fresaun  6763  fresaunres2  6764
  Copyright terms: Public domain W3C validator