MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  un23 Structured version   Visualization version   GIF version

Theorem un23 4102
Description: A rearrangement of union. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
un23 ((𝐴𝐵) ∪ 𝐶) = ((𝐴𝐶) ∪ 𝐵)

Proof of Theorem un23
StepHypRef Expression
1 unass 4100 . 2 ((𝐴𝐵) ∪ 𝐶) = (𝐴 ∪ (𝐵𝐶))
2 un12 4101 . 2 (𝐴 ∪ (𝐵𝐶)) = (𝐵 ∪ (𝐴𝐶))
3 uncom 4087 . 2 (𝐵 ∪ (𝐴𝐶)) = ((𝐴𝐶) ∪ 𝐵)
41, 2, 33eqtri 2770 1 ((𝐴𝐵) ∪ 𝐶) = ((𝐴𝐶) ∪ 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cun 3885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-un 3892
This theorem is referenced by:  ssunpr  4765  setscom  16881  cycpmco2rn  31392  poimirlem6  35783  poimirlem7  35784  poimirlem16  35793  poimirlem19  35796  iocunico  41042  dfrcl2  41282
  Copyright terms: Public domain W3C validator