| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > un23 | Structured version Visualization version GIF version | ||
| Description: A rearrangement of union. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| un23 | ⊢ ((𝐴 ∪ 𝐵) ∪ 𝐶) = ((𝐴 ∪ 𝐶) ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unass 4117 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∪ 𝐶) = (𝐴 ∪ (𝐵 ∪ 𝐶)) | |
| 2 | un12 4118 | . 2 ⊢ (𝐴 ∪ (𝐵 ∪ 𝐶)) = (𝐵 ∪ (𝐴 ∪ 𝐶)) | |
| 3 | uncom 4103 | . 2 ⊢ (𝐵 ∪ (𝐴 ∪ 𝐶)) = ((𝐴 ∪ 𝐶) ∪ 𝐵) | |
| 4 | 1, 2, 3 | 3eqtri 2758 | 1 ⊢ ((𝐴 ∪ 𝐵) ∪ 𝐶) = ((𝐴 ∪ 𝐶) ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∪ cun 3895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3902 |
| This theorem is referenced by: ssunpr 4781 setscom 17086 cycpmco2rn 33086 poimirlem6 37666 poimirlem7 37667 poimirlem16 37676 poimirlem19 37679 iocunico 43244 dfrcl2 43707 |
| Copyright terms: Public domain | W3C validator |