MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  un23 Structured version   Visualization version   GIF version

Theorem un23 4082
Description: A rearrangement of union. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
un23 ((𝐴𝐵) ∪ 𝐶) = ((𝐴𝐶) ∪ 𝐵)

Proof of Theorem un23
StepHypRef Expression
1 unass 4080 . 2 ((𝐴𝐵) ∪ 𝐶) = (𝐴 ∪ (𝐵𝐶))
2 un12 4081 . 2 (𝐴 ∪ (𝐵𝐶)) = (𝐵 ∪ (𝐴𝐶))
3 uncom 4067 . 2 (𝐵 ∪ (𝐴𝐶)) = ((𝐴𝐶) ∪ 𝐵)
41, 2, 33eqtri 2769 1 ((𝐴𝐵) ∪ 𝐶) = ((𝐴𝐶) ∪ 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543  cun 3864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3410  df-un 3871
This theorem is referenced by:  ssunpr  4745  setscom  16733  cycpmco2rn  31111  poimirlem6  35520  poimirlem7  35521  poimirlem16  35530  poimirlem19  35533  iocunico  40745  dfrcl2  40959
  Copyright terms: Public domain W3C validator