![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > un23 | Structured version Visualization version GIF version |
Description: A rearrangement of union. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
un23 | ⊢ ((𝐴 ∪ 𝐵) ∪ 𝐶) = ((𝐴 ∪ 𝐶) ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unass 4166 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∪ 𝐶) = (𝐴 ∪ (𝐵 ∪ 𝐶)) | |
2 | un12 4167 | . 2 ⊢ (𝐴 ∪ (𝐵 ∪ 𝐶)) = (𝐵 ∪ (𝐴 ∪ 𝐶)) | |
3 | uncom 4153 | . 2 ⊢ (𝐵 ∪ (𝐴 ∪ 𝐶)) = ((𝐴 ∪ 𝐶) ∪ 𝐵) | |
4 | 1, 2, 3 | 3eqtri 2763 | 1 ⊢ ((𝐴 ∪ 𝐵) ∪ 𝐶) = ((𝐴 ∪ 𝐶) ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∪ cun 3946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-un 3953 |
This theorem is referenced by: ssunpr 4835 setscom 17120 cycpmco2rn 32569 poimirlem6 36810 poimirlem7 36811 poimirlem16 36820 poimirlem19 36823 iocunico 42275 dfrcl2 42740 |
Copyright terms: Public domain | W3C validator |