MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elunnel2 Structured version   Visualization version   GIF version

Theorem elunnel2 4165
Description: A member of a union that is not a member of the second class, is a member of the first class. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
elunnel2 ((𝐴 ∈ (𝐵𝐶) ∧ ¬ 𝐴𝐶) → 𝐴𝐵)

Proof of Theorem elunnel2
StepHypRef Expression
1 elun 4163 . . . 4 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵𝐴𝐶))
21biimpi 216 . . 3 (𝐴 ∈ (𝐵𝐶) → (𝐴𝐵𝐴𝐶))
32orcomd 871 . 2 (𝐴 ∈ (𝐵𝐶) → (𝐴𝐶𝐴𝐵))
43orcanai 1004 1 ((𝐴 ∈ (𝐵𝐶) ∧ ¬ 𝐴𝐶) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  wcel 2106  cun 3961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-un 3968
This theorem is referenced by:  fvn0fvelrn  6938  limcresiooub  45598  limcresioolb  45599  fourierdlem48  46110  fourierdlem49  46111  fourierdlem101  46163  prsal  46274  isomenndlem  46486  hsphoidmvle2  46541  hsphoidmvle  46542
  Copyright terms: Public domain W3C validator