| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elunnel2 | Structured version Visualization version GIF version | ||
| Description: A member of a union that is not a member of the second class, is a member of the first class. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| elunnel2 | ⊢ ((𝐴 ∈ (𝐵 ∪ 𝐶) ∧ ¬ 𝐴 ∈ 𝐶) → 𝐴 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elun 4098 | . . . 4 ⊢ (𝐴 ∈ (𝐵 ∪ 𝐶) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ 𝐶)) | |
| 2 | 1 | biimpi 216 | . . 3 ⊢ (𝐴 ∈ (𝐵 ∪ 𝐶) → (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ 𝐶)) |
| 3 | 2 | orcomd 871 | . 2 ⊢ (𝐴 ∈ (𝐵 ∪ 𝐶) → (𝐴 ∈ 𝐶 ∨ 𝐴 ∈ 𝐵)) |
| 4 | 3 | orcanai 1004 | 1 ⊢ ((𝐴 ∈ (𝐵 ∪ 𝐶) ∧ ¬ 𝐴 ∈ 𝐶) → 𝐴 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 ∈ wcel 2111 ∪ cun 3895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3902 |
| This theorem is referenced by: fvn0fvelrn 6846 limcresiooub 45680 limcresioolb 45681 fourierdlem48 46192 fourierdlem49 46193 fourierdlem101 46245 prsal 46356 isomenndlem 46568 hsphoidmvle2 46623 hsphoidmvle 46624 |
| Copyright terms: Public domain | W3C validator |