Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elunnel2 | Structured version Visualization version GIF version |
Description: A member of a union that is not a member of the second class, is a member of the first class. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
elunnel2 | ⊢ ((𝐴 ∈ (𝐵 ∪ 𝐶) ∧ ¬ 𝐴 ∈ 𝐶) → 𝐴 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elun 4083 | . . . 4 ⊢ (𝐴 ∈ (𝐵 ∪ 𝐶) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ 𝐶)) | |
2 | 1 | biimpi 215 | . . 3 ⊢ (𝐴 ∈ (𝐵 ∪ 𝐶) → (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ 𝐶)) |
3 | 2 | orcomd 868 | . 2 ⊢ (𝐴 ∈ (𝐵 ∪ 𝐶) → (𝐴 ∈ 𝐶 ∨ 𝐴 ∈ 𝐵)) |
4 | 3 | orcanai 1000 | 1 ⊢ ((𝐴 ∈ (𝐵 ∪ 𝐶) ∧ ¬ 𝐴 ∈ 𝐶) → 𝐴 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∨ wo 844 ∈ wcel 2106 ∪ cun 3885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 |
This theorem is referenced by: limcresiooub 43183 limcresioolb 43184 fourierdlem48 43695 fourierdlem49 43696 fourierdlem101 43748 prsal 43859 isomenndlem 44068 hsphoidmvle2 44123 hsphoidmvle 44124 |
Copyright terms: Public domain | W3C validator |