MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elunnel2 Structured version   Visualization version   GIF version

Theorem elunnel2 4178
Description: A member of a union that is not a member of the second class, is a member of the first class. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
elunnel2 ((𝐴 ∈ (𝐵𝐶) ∧ ¬ 𝐴𝐶) → 𝐴𝐵)

Proof of Theorem elunnel2
StepHypRef Expression
1 elun 4176 . . . 4 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵𝐴𝐶))
21biimpi 216 . . 3 (𝐴 ∈ (𝐵𝐶) → (𝐴𝐵𝐴𝐶))
32orcomd 870 . 2 (𝐴 ∈ (𝐵𝐶) → (𝐴𝐶𝐴𝐵))
43orcanai 1003 1 ((𝐴 ∈ (𝐵𝐶) ∧ ¬ 𝐴𝐶) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846  wcel 2108  cun 3974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-un 3981
This theorem is referenced by:  fvn0fvelrn  6951  limcresiooub  45563  limcresioolb  45564  fourierdlem48  46075  fourierdlem49  46076  fourierdlem101  46128  prsal  46239  isomenndlem  46451  hsphoidmvle2  46506  hsphoidmvle  46507
  Copyright terms: Public domain W3C validator