MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unisnv Structured version   Visualization version   GIF version

Theorem unisnv 4891
Description: A set equals the union of its singleton (setvar case). (Contributed by NM, 30-Aug-1993.)
Assertion
Ref Expression
unisnv {𝑥} = 𝑥

Proof of Theorem unisnv
StepHypRef Expression
1 vex 3451 . 2 𝑥 ∈ V
21unisn 4890 1 {𝑥} = 𝑥
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  {csn 4589   cuni 4871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-un 3919  df-ss 3931  df-sn 4590  df-pr 4592  df-uni 4872
This theorem is referenced by:  uniintsn  4949  uniabio  6478  iotauni2  6480  opabiotafun  6941  onuninsuci  7816  en1b  8996  fin1a2lem10  10362  incexclem  15802  sylow2a  19549  1stckgenlem  23440  alexsubALTlem3  23936  ptcmplem2  23940  icccmplem1  24711  unidifsnel  32464  unidifsnne  32465  disjabrex  32511  disjabrexf  32512  fiunelcarsg  34307  carsgclctunlem1  34308  wevgblacfn  35096  fobigcup  35888  mbfresfi  37660  termco  49470
  Copyright terms: Public domain W3C validator