| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unisnv | Structured version Visualization version GIF version | ||
| Description: A set equals the union of its singleton (setvar case). (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| unisnv | ⊢ ∪ {𝑥} = 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3451 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | 1 | unisn 4890 | 1 ⊢ ∪ {𝑥} = 𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 {csn 4589 ∪ cuni 4871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-ss 3931 df-sn 4590 df-pr 4592 df-uni 4872 |
| This theorem is referenced by: uniintsn 4949 uniabio 6478 iotauni2 6480 opabiotafun 6941 onuninsuci 7816 en1b 8996 fin1a2lem10 10362 incexclem 15802 sylow2a 19549 1stckgenlem 23440 alexsubALTlem3 23936 ptcmplem2 23940 icccmplem1 24711 unidifsnel 32464 unidifsnne 32465 disjabrex 32511 disjabrexf 32512 fiunelcarsg 34307 carsgclctunlem1 34308 wevgblacfn 35096 fobigcup 35888 mbfresfi 37660 termco 49470 |
| Copyright terms: Public domain | W3C validator |