| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unisnv | Structured version Visualization version GIF version | ||
| Description: A set equals the union of its singleton (setvar case). (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| unisnv | ⊢ ∪ {𝑥} = 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3440 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | 1 | unisn 4877 | 1 ⊢ ∪ {𝑥} = 𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 {csn 4577 ∪ cuni 4858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-un 3908 df-ss 3920 df-sn 4578 df-pr 4580 df-uni 4859 |
| This theorem is referenced by: uniintsn 4935 uniabio 6452 iotauni2 6454 opabiotafun 6903 onuninsuci 7773 en1b 8950 fin1a2lem10 10303 incexclem 15743 sylow2a 19498 1stckgenlem 23438 alexsubALTlem3 23934 ptcmplem2 23938 icccmplem1 24709 unidifsnel 32479 unidifsnne 32480 disjabrex 32526 disjabrexf 32527 fiunelcarsg 34284 carsgclctunlem1 34285 fineqvnttrclselem2 35075 fineqvnttrclse 35077 wevgblacfn 35086 fobigcup 35878 mbfresfi 37650 termco 49470 |
| Copyright terms: Public domain | W3C validator |