![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unisnv | Structured version Visualization version GIF version |
Description: A set equals the union of its singleton (setvar case). (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
unisnv | ⊢ ∪ {𝑥} = 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3482 | . 2 ⊢ 𝑥 ∈ V | |
2 | 1 | unisn 4931 | 1 ⊢ ∪ {𝑥} = 𝑥 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 {csn 4631 ∪ cuni 4912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-un 3968 df-ss 3980 df-sn 4632 df-pr 4634 df-uni 4913 |
This theorem is referenced by: uniintsn 4990 uniabio 6530 iotauni2 6532 opabiotafun 6989 onuninsuci 7861 en1b 9064 fin1a2lem10 10447 incexclem 15869 sylow2a 19652 1stckgenlem 23577 alexsubALTlem3 24073 ptcmplem2 24077 icccmplem1 24858 unidifsnel 32561 unidifsnne 32562 disjabrex 32602 disjabrexf 32603 fiunelcarsg 34298 carsgclctunlem1 34299 wevgblacfn 35093 fobigcup 35882 mbfresfi 37653 |
Copyright terms: Public domain | W3C validator |