Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unisnv | Structured version Visualization version GIF version |
Description: A set equals the union of its singleton (setvar case). (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
unisnv | ⊢ ∪ {𝑥} = 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3441 | . 2 ⊢ 𝑥 ∈ V | |
2 | 1 | unisn 4866 | 1 ⊢ ∪ {𝑥} = 𝑥 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 {csn 4565 ∪ cuni 4844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3439 df-un 3897 df-in 3899 df-ss 3909 df-sn 4566 df-pr 4568 df-uni 4845 |
This theorem is referenced by: uniintsn 4925 uniabio 6425 iotauni2 6427 opabiotafun 6881 onuninsuci 7719 en1b 8848 fin1a2lem10 10211 incexclem 15593 sylow2a 19269 1stckgenlem 22749 alexsubALTlem3 23245 ptcmplem2 23249 icccmplem1 24030 unidifsnel 30928 unidifsnne 30929 disjabrex 30966 disjabrexf 30967 fiunelcarsg 32328 carsgclctunlem1 32329 fobigcup 34247 mbfresfi 35867 |
Copyright terms: Public domain | W3C validator |