| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unisnv | Structured version Visualization version GIF version | ||
| Description: A set equals the union of its singleton (setvar case). (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| unisnv | ⊢ ∪ {𝑥} = 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3468 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | 1 | unisn 4907 | 1 ⊢ ∪ {𝑥} = 𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 {csn 4606 ∪ cuni 4888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-un 3936 df-ss 3948 df-sn 4607 df-pr 4609 df-uni 4889 |
| This theorem is referenced by: uniintsn 4966 uniabio 6503 iotauni2 6505 opabiotafun 6964 onuninsuci 7840 en1b 9044 fin1a2lem10 10428 incexclem 15857 sylow2a 19605 1stckgenlem 23496 alexsubALTlem3 23992 ptcmplem2 23996 icccmplem1 24767 unidifsnel 32521 unidifsnne 32522 disjabrex 32568 disjabrexf 32569 fiunelcarsg 34353 carsgclctunlem1 34354 wevgblacfn 35136 fobigcup 35923 mbfresfi 37695 |
| Copyright terms: Public domain | W3C validator |