| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unisnv | Structured version Visualization version GIF version | ||
| Description: A set equals the union of its singleton (setvar case). (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| unisnv | ⊢ ∪ {𝑥} = 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3468 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | 1 | unisn 4908 | 1 ⊢ ∪ {𝑥} = 𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 {csn 4608 ∪ cuni 4889 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3466 df-un 3938 df-ss 3950 df-sn 4609 df-pr 4611 df-uni 4890 |
| This theorem is referenced by: uniintsn 4967 uniabio 6509 iotauni2 6511 opabiotafun 6970 onuninsuci 7844 en1b 9048 fin1a2lem10 10432 incexclem 15855 sylow2a 19610 1stckgenlem 23526 alexsubALTlem3 24022 ptcmplem2 24026 icccmplem1 24799 unidifsnel 32500 unidifsnne 32501 disjabrex 32542 disjabrexf 32543 fiunelcarsg 34259 carsgclctunlem1 34260 wevgblacfn 35055 fobigcup 35842 mbfresfi 37614 |
| Copyright terms: Public domain | W3C validator |