| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unisnv | Structured version Visualization version GIF version | ||
| Description: A set equals the union of its singleton (setvar case). (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| unisnv | ⊢ ∪ {𝑥} = 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3448 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | 1 | unisn 4886 | 1 ⊢ ∪ {𝑥} = 𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 {csn 4585 ∪ cuni 4867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-un 3916 df-ss 3928 df-sn 4586 df-pr 4588 df-uni 4868 |
| This theorem is referenced by: uniintsn 4945 uniabio 6466 iotauni2 6468 opabiotafun 6923 onuninsuci 7796 en1b 8973 fin1a2lem10 10338 incexclem 15778 sylow2a 19525 1stckgenlem 23416 alexsubALTlem3 23912 ptcmplem2 23916 icccmplem1 24687 unidifsnel 32437 unidifsnne 32438 disjabrex 32484 disjabrexf 32485 fiunelcarsg 34280 carsgclctunlem1 34281 wevgblacfn 35069 fobigcup 35861 mbfresfi 37633 termco 49443 |
| Copyright terms: Public domain | W3C validator |