| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unisnv | Structured version Visualization version GIF version | ||
| Description: A set equals the union of its singleton (setvar case). (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| unisnv | ⊢ ∪ {𝑥} = 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3440 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | 1 | unisn 4875 | 1 ⊢ ∪ {𝑥} = 𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 {csn 4573 ∪ cuni 4856 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3902 df-ss 3914 df-sn 4574 df-pr 4576 df-uni 4857 |
| This theorem is referenced by: uniintsn 4933 uniabio 6451 iotauni2 6453 opabiotafun 6902 onuninsuci 7770 en1b 8947 fin1a2lem10 10300 incexclem 15743 sylow2a 19531 1stckgenlem 23468 alexsubALTlem3 23964 ptcmplem2 23968 icccmplem1 24738 unidifsnel 32515 unidifsnne 32516 disjabrex 32562 disjabrexf 32563 fiunelcarsg 34329 carsgclctunlem1 34330 fineqvnttrclselem2 35142 fineqvnttrclse 35144 wevgblacfn 35153 fobigcup 35942 mbfresfi 37716 termco 49592 |
| Copyright terms: Public domain | W3C validator |