MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unisnv Structured version   Visualization version   GIF version

Theorem unisnv 4932
Description: A set equals the union of its singleton (setvar case). (Contributed by NM, 30-Aug-1993.)
Assertion
Ref Expression
unisnv {𝑥} = 𝑥

Proof of Theorem unisnv
StepHypRef Expression
1 vex 3479 . 2 𝑥 ∈ V
21unisn 4931 1 {𝑥} = 𝑥
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  {csn 4629   cuni 4909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-un 3954  df-in 3956  df-ss 3966  df-sn 4630  df-pr 4632  df-uni 4910
This theorem is referenced by:  uniintsn  4992  uniabio  6511  iotauni2  6513  opabiotafun  6973  onuninsuci  7829  en1b  9023  fin1a2lem10  10404  incexclem  15782  sylow2a  19487  1stckgenlem  23057  alexsubALTlem3  23553  ptcmplem2  23557  icccmplem1  24338  unidifsnel  31772  unidifsnne  31773  disjabrex  31813  disjabrexf  31814  fiunelcarsg  33315  carsgclctunlem1  33316  fobigcup  34872  mbfresfi  36534
  Copyright terms: Public domain W3C validator