![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unisnv | Structured version Visualization version GIF version |
Description: A set equals the union of its singleton (setvar case). (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
unisnv | ⊢ ∪ {𝑥} = 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3492 | . 2 ⊢ 𝑥 ∈ V | |
2 | 1 | unisn 4950 | 1 ⊢ ∪ {𝑥} = 𝑥 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 {csn 4648 ∪ cuni 4931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-ss 3993 df-sn 4649 df-pr 4651 df-uni 4932 |
This theorem is referenced by: uniintsn 5009 uniabio 6540 iotauni2 6542 opabiotafun 7002 onuninsuci 7877 en1b 9088 fin1a2lem10 10478 incexclem 15884 sylow2a 19661 1stckgenlem 23582 alexsubALTlem3 24078 ptcmplem2 24082 icccmplem1 24863 unidifsnel 32563 unidifsnne 32564 disjabrex 32604 disjabrexf 32605 fiunelcarsg 34281 carsgclctunlem1 34282 wevgblacfn 35076 fobigcup 35864 mbfresfi 37626 |
Copyright terms: Public domain | W3C validator |