![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iotauni | Structured version Visualization version GIF version |
Description: Equivalence between two different forms of ℩. (Contributed by Andrew Salmon, 12-Jul-2011.) |
Ref | Expression |
---|---|
iotauni | ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eu6 2562 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) | |
2 | iotaval 6520 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (℩𝑥𝜑) = 𝑧) | |
3 | uniabio 6516 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ∪ {𝑥 ∣ 𝜑} = 𝑧) | |
4 | 2, 3 | eqtr4d 2768 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) |
5 | 4 | exlimiv 1925 | . 2 ⊢ (∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) |
6 | 1, 5 | sylbi 216 | 1 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1531 = wceq 1533 ∃wex 1773 ∃!weu 2556 {cab 2702 ∪ cuni 4909 ℩cio 6499 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2166 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-v 3463 df-un 3949 df-ss 3961 df-sn 4631 df-pr 4633 df-uni 4910 df-iota 6501 |
This theorem is referenced by: iotaint 6525 iotassuniOLD 6528 dfiota4 6541 fveu 6885 riotauni 7381 afv2eu 46756 |
Copyright terms: Public domain | W3C validator |