![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unissi | Structured version Visualization version GIF version |
Description: Subclass relationship for subclass union. Inference form of uniss 4920. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
unissi.1 | ⊢ 𝐴 ⊆ 𝐵 |
Ref | Expression |
---|---|
unissi | ⊢ ∪ 𝐴 ⊆ ∪ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unissi.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | uniss 4920 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ 𝐴 ⊆ ∪ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3963 ∪ cuni 4912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-ss 3980 df-uni 4913 |
This theorem is referenced by: unidif 4947 unixpss 5823 riotassuni 7428 unifpw 9393 fiuni 9466 rankuni 9901 fin23lem29 10379 fin23lem30 10380 fin1a2lem12 10449 prdsds 17511 psss 18638 tgval2 22979 eltg4i 22983 ntrss2 23081 isopn3 23090 mretopd 23116 ordtbas 23216 cmpcov2 23414 tgcmp 23425 comppfsc 23556 alexsublem 24068 alexsubALTlem3 24073 alexsubALTlem4 24074 cldsubg 24135 bndth 25004 uniioombllem4 25635 uniioombllem5 25636 omssubadd 34282 cvmscld 35258 fnessref 36340 inunissunidif 37358 mblfinlem3 37646 mblfinlem4 37647 ismblfin 37648 mbfresfi 37653 cover2 37702 salexct 46290 salgencntex 46299 |
Copyright terms: Public domain | W3C validator |