| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unissi | Structured version Visualization version GIF version | ||
| Description: Subclass relationship for subclass union. Inference form of uniss 4875. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| unissi.1 | ⊢ 𝐴 ⊆ 𝐵 |
| Ref | Expression |
|---|---|
| unissi | ⊢ ∪ 𝐴 ⊆ ∪ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unissi.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | uniss 4875 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ 𝐴 ⊆ ∪ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3911 ∪ cuni 4867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-ss 3928 df-uni 4868 |
| This theorem is referenced by: unidif 4902 unixpss 5764 riotassuni 7366 unifpw 9282 fiuni 9355 rankuni 9792 fin23lem29 10270 fin23lem30 10271 fin1a2lem12 10340 prdsds 17403 psss 18515 tgval2 22819 eltg4i 22823 ntrss2 22920 isopn3 22929 mretopd 22955 ordtbas 23055 cmpcov2 23253 tgcmp 23264 comppfsc 23395 alexsublem 23907 alexsubALTlem3 23912 alexsubALTlem4 23913 cldsubg 23974 bndth 24833 uniioombllem4 25463 uniioombllem5 25464 omssubadd 34264 cvmscld 35233 fnessref 36318 inunissunidif 37336 mblfinlem3 37626 mblfinlem4 37627 ismblfin 37628 mbfresfi 37633 cover2 37682 salexct 46305 salgencntex 46314 |
| Copyright terms: Public domain | W3C validator |