Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unissi | Structured version Visualization version GIF version |
Description: Subclass relationship for subclass union. Inference form of uniss 4844. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
unissi.1 | ⊢ 𝐴 ⊆ 𝐵 |
Ref | Expression |
---|---|
unissi | ⊢ ∪ 𝐴 ⊆ ∪ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unissi.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | uniss 4844 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ 𝐴 ⊆ ∪ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3883 ∪ cuni 4836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-uni 4837 |
This theorem is referenced by: unidif 4872 unixpss 5709 riotassuni 7253 unifpw 9052 fiuni 9117 rankuni 9552 fin23lem29 10028 fin23lem30 10029 fin1a2lem12 10098 prdsds 17092 psss 18213 tgval2 22014 eltg4i 22018 ntrss2 22116 isopn3 22125 mretopd 22151 ordtbas 22251 cmpcov2 22449 tgcmp 22460 comppfsc 22591 alexsublem 23103 alexsubALTlem3 23108 alexsubALTlem4 23109 cldsubg 23170 bndth 24027 uniioombllem4 24655 uniioombllem5 24656 omssubadd 32167 cvmscld 33135 fnessref 34473 inunissunidif 35473 mblfinlem3 35743 mblfinlem4 35744 ismblfin 35745 mbfresfi 35750 cover2 35799 salexct 43763 salgencntex 43772 |
Copyright terms: Public domain | W3C validator |