| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unissi | Structured version Visualization version GIF version | ||
| Description: Subclass relationship for subclass union. Inference form of uniss 4879. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| unissi.1 | ⊢ 𝐴 ⊆ 𝐵 |
| Ref | Expression |
|---|---|
| unissi | ⊢ ∪ 𝐴 ⊆ ∪ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unissi.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | uniss 4879 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ 𝐴 ⊆ ∪ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3914 ∪ cuni 4871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-ss 3931 df-uni 4872 |
| This theorem is referenced by: unidif 4906 unixpss 5773 riotassuni 7384 unifpw 9306 fiuni 9379 rankuni 9816 fin23lem29 10294 fin23lem30 10295 fin1a2lem12 10364 prdsds 17427 psss 18539 tgval2 22843 eltg4i 22847 ntrss2 22944 isopn3 22953 mretopd 22979 ordtbas 23079 cmpcov2 23277 tgcmp 23288 comppfsc 23419 alexsublem 23931 alexsubALTlem3 23936 alexsubALTlem4 23937 cldsubg 23998 bndth 24857 uniioombllem4 25487 uniioombllem5 25488 omssubadd 34291 cvmscld 35260 fnessref 36345 inunissunidif 37363 mblfinlem3 37653 mblfinlem4 37654 ismblfin 37655 mbfresfi 37660 cover2 37709 salexct 46332 salgencntex 46341 |
| Copyright terms: Public domain | W3C validator |