![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unissi | Structured version Visualization version GIF version |
Description: Subclass relationship for subclass union. Inference form of uniss 4939. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
unissi.1 | ⊢ 𝐴 ⊆ 𝐵 |
Ref | Expression |
---|---|
unissi | ⊢ ∪ 𝐴 ⊆ ∪ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unissi.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | uniss 4939 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ 𝐴 ⊆ ∪ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3976 ∪ cuni 4931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-uni 4932 |
This theorem is referenced by: unidif 4966 unixpss 5834 riotassuni 7445 unifpw 9425 fiuni 9497 rankuni 9932 fin23lem29 10410 fin23lem30 10411 fin1a2lem12 10480 prdsds 17524 psss 18650 tgval2 22984 eltg4i 22988 ntrss2 23086 isopn3 23095 mretopd 23121 ordtbas 23221 cmpcov2 23419 tgcmp 23430 comppfsc 23561 alexsublem 24073 alexsubALTlem3 24078 alexsubALTlem4 24079 cldsubg 24140 bndth 25009 uniioombllem4 25640 uniioombllem5 25641 omssubadd 34265 cvmscld 35241 fnessref 36323 inunissunidif 37341 mblfinlem3 37619 mblfinlem4 37620 ismblfin 37621 mbfresfi 37626 cover2 37675 salexct 46255 salgencntex 46264 |
Copyright terms: Public domain | W3C validator |