Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unissi | Structured version Visualization version GIF version |
Description: Subclass relationship for subclass union. Inference form of uniss 4848. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
unissi.1 | ⊢ 𝐴 ⊆ 𝐵 |
Ref | Expression |
---|---|
unissi | ⊢ ∪ 𝐴 ⊆ ∪ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unissi.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | uniss 4848 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ 𝐴 ⊆ ∪ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3888 ∪ cuni 4840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3435 df-in 3895 df-ss 3905 df-uni 4841 |
This theorem is referenced by: unidif 4876 unixpss 5722 riotassuni 7282 unifpw 9131 fiuni 9196 rankuni 9630 fin23lem29 10106 fin23lem30 10107 fin1a2lem12 10176 prdsds 17184 psss 18307 tgval2 22115 eltg4i 22119 ntrss2 22217 isopn3 22226 mretopd 22252 ordtbas 22352 cmpcov2 22550 tgcmp 22561 comppfsc 22692 alexsublem 23204 alexsubALTlem3 23209 alexsubALTlem4 23210 cldsubg 23271 bndth 24130 uniioombllem4 24759 uniioombllem5 24760 omssubadd 32276 cvmscld 33244 fnessref 34555 inunissunidif 35555 mblfinlem3 35825 mblfinlem4 35826 ismblfin 35827 mbfresfi 35832 cover2 35881 salexct 43880 salgencntex 43889 |
Copyright terms: Public domain | W3C validator |