| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unissi | Structured version Visualization version GIF version | ||
| Description: Subclass relationship for subclass union. Inference form of uniss 4862. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| unissi.1 | ⊢ 𝐴 ⊆ 𝐵 |
| Ref | Expression |
|---|---|
| unissi | ⊢ ∪ 𝐴 ⊆ ∪ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unissi.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | uniss 4862 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ 𝐴 ⊆ ∪ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3897 ∪ cuni 4854 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3914 df-uni 4855 |
| This theorem is referenced by: unidif 4888 unixpss 5745 riotassuni 7338 unifpw 9234 fiuni 9307 rankuni 9751 fin23lem29 10227 fin23lem30 10228 fin1a2lem12 10297 prdsds 17363 psss 18481 tgval2 22866 eltg4i 22870 ntrss2 22967 isopn3 22976 mretopd 23002 ordtbas 23102 cmpcov2 23300 tgcmp 23311 comppfsc 23442 alexsublem 23954 alexsubALTlem3 23959 alexsubALTlem4 23960 cldsubg 24021 bndth 24879 uniioombllem4 25509 uniioombllem5 25510 omssubadd 34305 cvmscld 35309 fnessref 36391 inunissunidif 37409 mblfinlem3 37699 mblfinlem4 37700 ismblfin 37701 mbfresfi 37706 cover2 37755 salexct 46372 salgencntex 46381 |
| Copyright terms: Public domain | W3C validator |