| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unissi | Structured version Visualization version GIF version | ||
| Description: Subclass relationship for subclass union. Inference form of uniss 4866. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| unissi.1 | ⊢ 𝐴 ⊆ 𝐵 |
| Ref | Expression |
|---|---|
| unissi | ⊢ ∪ 𝐴 ⊆ ∪ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unissi.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | uniss 4866 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ 𝐴 ⊆ ∪ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3903 ∪ cuni 4858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-ss 3920 df-uni 4859 |
| This theorem is referenced by: unidif 4892 unixpss 5753 riotassuni 7346 unifpw 9245 fiuni 9318 rankuni 9759 fin23lem29 10235 fin23lem30 10236 fin1a2lem12 10305 prdsds 17368 psss 18486 tgval2 22841 eltg4i 22845 ntrss2 22942 isopn3 22951 mretopd 22977 ordtbas 23077 cmpcov2 23275 tgcmp 23286 comppfsc 23417 alexsublem 23929 alexsubALTlem3 23934 alexsubALTlem4 23935 cldsubg 23996 bndth 24855 uniioombllem4 25485 uniioombllem5 25486 omssubadd 34268 cvmscld 35246 fnessref 36331 inunissunidif 37349 mblfinlem3 37639 mblfinlem4 37640 ismblfin 37641 mbfresfi 37646 cover2 37695 salexct 46315 salgencntex 46324 |
| Copyright terms: Public domain | W3C validator |