| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unissi | Structured version Visualization version GIF version | ||
| Description: Subclass relationship for subclass union. Inference form of uniss 4896. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| unissi.1 | ⊢ 𝐴 ⊆ 𝐵 |
| Ref | Expression |
|---|---|
| unissi | ⊢ ∪ 𝐴 ⊆ ∪ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unissi.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | uniss 4896 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ 𝐴 ⊆ ∪ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3931 ∪ cuni 4888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-ss 3948 df-uni 4889 |
| This theorem is referenced by: unidif 4923 unixpss 5794 riotassuni 7407 unifpw 9372 fiuni 9445 rankuni 9882 fin23lem29 10360 fin23lem30 10361 fin1a2lem12 10430 prdsds 17483 psss 18595 tgval2 22899 eltg4i 22903 ntrss2 23000 isopn3 23009 mretopd 23035 ordtbas 23135 cmpcov2 23333 tgcmp 23344 comppfsc 23475 alexsublem 23987 alexsubALTlem3 23992 alexsubALTlem4 23993 cldsubg 24054 bndth 24913 uniioombllem4 25544 uniioombllem5 25545 omssubadd 34337 cvmscld 35300 fnessref 36380 inunissunidif 37398 mblfinlem3 37688 mblfinlem4 37689 ismblfin 37690 mbfresfi 37695 cover2 37744 salexct 46330 salgencntex 46339 |
| Copyright terms: Public domain | W3C validator |