| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unissi | Structured version Visualization version GIF version | ||
| Description: Subclass relationship for subclass union. Inference form of uniss 4882. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| unissi.1 | ⊢ 𝐴 ⊆ 𝐵 |
| Ref | Expression |
|---|---|
| unissi | ⊢ ∪ 𝐴 ⊆ ∪ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unissi.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | uniss 4882 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪ 𝐴 ⊆ ∪ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3917 ∪ cuni 4874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3934 df-uni 4875 |
| This theorem is referenced by: unidif 4909 unixpss 5776 riotassuni 7387 unifpw 9313 fiuni 9386 rankuni 9823 fin23lem29 10301 fin23lem30 10302 fin1a2lem12 10371 prdsds 17434 psss 18546 tgval2 22850 eltg4i 22854 ntrss2 22951 isopn3 22960 mretopd 22986 ordtbas 23086 cmpcov2 23284 tgcmp 23295 comppfsc 23426 alexsublem 23938 alexsubALTlem3 23943 alexsubALTlem4 23944 cldsubg 24005 bndth 24864 uniioombllem4 25494 uniioombllem5 25495 omssubadd 34298 cvmscld 35267 fnessref 36352 inunissunidif 37370 mblfinlem3 37660 mblfinlem4 37661 ismblfin 37662 mbfresfi 37667 cover2 37716 salexct 46339 salgencntex 46348 |
| Copyright terms: Public domain | W3C validator |