MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordunidif Structured version   Visualization version   GIF version

Theorem ordunidif 6241
Description: The union of an ordinal stays the same if a subset equal to one of its elements is removed. (Contributed by NM, 10-Dec-2004.)
Assertion
Ref Expression
ordunidif ((Ord 𝐴𝐵𝐴) → (𝐴𝐵) = 𝐴)

Proof of Theorem ordunidif
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordelon 6217 . . . . . . . 8 ((Ord 𝐴𝐵𝐴) → 𝐵 ∈ On)
2 onelss 6235 . . . . . . . 8 (𝐵 ∈ On → (𝑥𝐵𝑥𝐵))
31, 2syl 17 . . . . . . 7 ((Ord 𝐴𝐵𝐴) → (𝑥𝐵𝑥𝐵))
4 eloni 6203 . . . . . . . . . . 11 (𝐵 ∈ On → Ord 𝐵)
5 ordirr 6211 . . . . . . . . . . 11 (Ord 𝐵 → ¬ 𝐵𝐵)
64, 5syl 17 . . . . . . . . . 10 (𝐵 ∈ On → ¬ 𝐵𝐵)
7 eldif 3948 . . . . . . . . . . 11 (𝐵 ∈ (𝐴𝐵) ↔ (𝐵𝐴 ∧ ¬ 𝐵𝐵))
87simplbi2 503 . . . . . . . . . 10 (𝐵𝐴 → (¬ 𝐵𝐵𝐵 ∈ (𝐴𝐵)))
96, 8syl5 34 . . . . . . . . 9 (𝐵𝐴 → (𝐵 ∈ On → 𝐵 ∈ (𝐴𝐵)))
109adantl 484 . . . . . . . 8 ((Ord 𝐴𝐵𝐴) → (𝐵 ∈ On → 𝐵 ∈ (𝐴𝐵)))
111, 10mpd 15 . . . . . . 7 ((Ord 𝐴𝐵𝐴) → 𝐵 ∈ (𝐴𝐵))
123, 11jctild 528 . . . . . 6 ((Ord 𝐴𝐵𝐴) → (𝑥𝐵 → (𝐵 ∈ (𝐴𝐵) ∧ 𝑥𝐵)))
1312adantr 483 . . . . 5 (((Ord 𝐴𝐵𝐴) ∧ 𝑥𝐴) → (𝑥𝐵 → (𝐵 ∈ (𝐴𝐵) ∧ 𝑥𝐵)))
14 sseq2 3995 . . . . . 6 (𝑦 = 𝐵 → (𝑥𝑦𝑥𝐵))
1514rspcev 3625 . . . . 5 ((𝐵 ∈ (𝐴𝐵) ∧ 𝑥𝐵) → ∃𝑦 ∈ (𝐴𝐵)𝑥𝑦)
1613, 15syl6 35 . . . 4 (((Ord 𝐴𝐵𝐴) ∧ 𝑥𝐴) → (𝑥𝐵 → ∃𝑦 ∈ (𝐴𝐵)𝑥𝑦))
17 eldif 3948 . . . . . . . . 9 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
1817biimpri 230 . . . . . . . 8 ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → 𝑥 ∈ (𝐴𝐵))
19 ssid 3991 . . . . . . . 8 𝑥𝑥
2018, 19jctir 523 . . . . . . 7 ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → (𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝑥))
2120ex 415 . . . . . 6 (𝑥𝐴 → (¬ 𝑥𝐵 → (𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝑥)))
22 sseq2 3995 . . . . . . 7 (𝑦 = 𝑥 → (𝑥𝑦𝑥𝑥))
2322rspcev 3625 . . . . . 6 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝑥) → ∃𝑦 ∈ (𝐴𝐵)𝑥𝑦)
2421, 23syl6 35 . . . . 5 (𝑥𝐴 → (¬ 𝑥𝐵 → ∃𝑦 ∈ (𝐴𝐵)𝑥𝑦))
2524adantl 484 . . . 4 (((Ord 𝐴𝐵𝐴) ∧ 𝑥𝐴) → (¬ 𝑥𝐵 → ∃𝑦 ∈ (𝐴𝐵)𝑥𝑦))
2616, 25pm2.61d 181 . . 3 (((Ord 𝐴𝐵𝐴) ∧ 𝑥𝐴) → ∃𝑦 ∈ (𝐴𝐵)𝑥𝑦)
2726ralrimiva 3184 . 2 ((Ord 𝐴𝐵𝐴) → ∀𝑥𝐴𝑦 ∈ (𝐴𝐵)𝑥𝑦)
28 unidif 4874 . 2 (∀𝑥𝐴𝑦 ∈ (𝐴𝐵)𝑥𝑦 (𝐴𝐵) = 𝐴)
2927, 28syl 17 1 ((Ord 𝐴𝐵𝐴) → (𝐴𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3140  wrex 3141  cdif 3935  wss 3938   cuni 4840  Ord word 6192  Oncon0 6193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-tr 5175  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-ord 6196  df-on 6197
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator