MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordunidif Structured version   Visualization version   GIF version

Theorem ordunidif 6407
Description: The union of an ordinal stays the same if a subset equal to one of its elements is removed. (Contributed by NM, 10-Dec-2004.)
Assertion
Ref Expression
ordunidif ((Ord 𝐴𝐵𝐴) → (𝐴𝐵) = 𝐴)

Proof of Theorem ordunidif
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordelon 6382 . . . . . . . 8 ((Ord 𝐴𝐵𝐴) → 𝐵 ∈ On)
2 onelss 6400 . . . . . . . 8 (𝐵 ∈ On → (𝑥𝐵𝑥𝐵))
31, 2syl 17 . . . . . . 7 ((Ord 𝐴𝐵𝐴) → (𝑥𝐵𝑥𝐵))
4 eloni 6368 . . . . . . . . . . 11 (𝐵 ∈ On → Ord 𝐵)
5 ordirr 6376 . . . . . . . . . . 11 (Ord 𝐵 → ¬ 𝐵𝐵)
64, 5syl 17 . . . . . . . . . 10 (𝐵 ∈ On → ¬ 𝐵𝐵)
7 eldif 3953 . . . . . . . . . . 11 (𝐵 ∈ (𝐴𝐵) ↔ (𝐵𝐴 ∧ ¬ 𝐵𝐵))
87simplbi2 500 . . . . . . . . . 10 (𝐵𝐴 → (¬ 𝐵𝐵𝐵 ∈ (𝐴𝐵)))
96, 8syl5 34 . . . . . . . . 9 (𝐵𝐴 → (𝐵 ∈ On → 𝐵 ∈ (𝐴𝐵)))
109adantl 481 . . . . . . . 8 ((Ord 𝐴𝐵𝐴) → (𝐵 ∈ On → 𝐵 ∈ (𝐴𝐵)))
111, 10mpd 15 . . . . . . 7 ((Ord 𝐴𝐵𝐴) → 𝐵 ∈ (𝐴𝐵))
123, 11jctild 525 . . . . . 6 ((Ord 𝐴𝐵𝐴) → (𝑥𝐵 → (𝐵 ∈ (𝐴𝐵) ∧ 𝑥𝐵)))
1312adantr 480 . . . . 5 (((Ord 𝐴𝐵𝐴) ∧ 𝑥𝐴) → (𝑥𝐵 → (𝐵 ∈ (𝐴𝐵) ∧ 𝑥𝐵)))
14 sseq2 4003 . . . . . 6 (𝑦 = 𝐵 → (𝑥𝑦𝑥𝐵))
1514rspcev 3606 . . . . 5 ((𝐵 ∈ (𝐴𝐵) ∧ 𝑥𝐵) → ∃𝑦 ∈ (𝐴𝐵)𝑥𝑦)
1613, 15syl6 35 . . . 4 (((Ord 𝐴𝐵𝐴) ∧ 𝑥𝐴) → (𝑥𝐵 → ∃𝑦 ∈ (𝐴𝐵)𝑥𝑦))
17 eldif 3953 . . . . . . . . 9 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
1817biimpri 227 . . . . . . . 8 ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → 𝑥 ∈ (𝐴𝐵))
19 ssid 3999 . . . . . . . 8 𝑥𝑥
2018, 19jctir 520 . . . . . . 7 ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → (𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝑥))
2120ex 412 . . . . . 6 (𝑥𝐴 → (¬ 𝑥𝐵 → (𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝑥)))
22 sseq2 4003 . . . . . . 7 (𝑦 = 𝑥 → (𝑥𝑦𝑥𝑥))
2322rspcev 3606 . . . . . 6 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝑥) → ∃𝑦 ∈ (𝐴𝐵)𝑥𝑦)
2421, 23syl6 35 . . . . 5 (𝑥𝐴 → (¬ 𝑥𝐵 → ∃𝑦 ∈ (𝐴𝐵)𝑥𝑦))
2524adantl 481 . . . 4 (((Ord 𝐴𝐵𝐴) ∧ 𝑥𝐴) → (¬ 𝑥𝐵 → ∃𝑦 ∈ (𝐴𝐵)𝑥𝑦))
2616, 25pm2.61d 179 . . 3 (((Ord 𝐴𝐵𝐴) ∧ 𝑥𝐴) → ∃𝑦 ∈ (𝐴𝐵)𝑥𝑦)
2726ralrimiva 3140 . 2 ((Ord 𝐴𝐵𝐴) → ∀𝑥𝐴𝑦 ∈ (𝐴𝐵)𝑥𝑦)
28 unidif 4939 . 2 (∀𝑥𝐴𝑦 ∈ (𝐴𝐵)𝑥𝑦 (𝐴𝐵) = 𝐴)
2927, 28syl 17 1 ((Ord 𝐴𝐵𝐴) → (𝐴𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1533  wcel 2098  wral 3055  wrex 3064  cdif 3940  wss 3943   cuni 4902  Ord word 6357  Oncon0 6358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-tr 5259  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-ord 6361  df-on 6362
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator