MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordunidif Structured version   Visualization version   GIF version

Theorem ordunidif 6433
Description: The union of an ordinal stays the same if a subset equal to one of its elements is removed. (Contributed by NM, 10-Dec-2004.)
Assertion
Ref Expression
ordunidif ((Ord 𝐴𝐵𝐴) → (𝐴𝐵) = 𝐴)

Proof of Theorem ordunidif
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordelon 6408 . . . . . . . 8 ((Ord 𝐴𝐵𝐴) → 𝐵 ∈ On)
2 onelss 6426 . . . . . . . 8 (𝐵 ∈ On → (𝑥𝐵𝑥𝐵))
31, 2syl 17 . . . . . . 7 ((Ord 𝐴𝐵𝐴) → (𝑥𝐵𝑥𝐵))
4 eloni 6394 . . . . . . . . . . 11 (𝐵 ∈ On → Ord 𝐵)
5 ordirr 6402 . . . . . . . . . . 11 (Ord 𝐵 → ¬ 𝐵𝐵)
64, 5syl 17 . . . . . . . . . 10 (𝐵 ∈ On → ¬ 𝐵𝐵)
7 eldif 3961 . . . . . . . . . . 11 (𝐵 ∈ (𝐴𝐵) ↔ (𝐵𝐴 ∧ ¬ 𝐵𝐵))
87simplbi2 500 . . . . . . . . . 10 (𝐵𝐴 → (¬ 𝐵𝐵𝐵 ∈ (𝐴𝐵)))
96, 8syl5 34 . . . . . . . . 9 (𝐵𝐴 → (𝐵 ∈ On → 𝐵 ∈ (𝐴𝐵)))
109adantl 481 . . . . . . . 8 ((Ord 𝐴𝐵𝐴) → (𝐵 ∈ On → 𝐵 ∈ (𝐴𝐵)))
111, 10mpd 15 . . . . . . 7 ((Ord 𝐴𝐵𝐴) → 𝐵 ∈ (𝐴𝐵))
123, 11jctild 525 . . . . . 6 ((Ord 𝐴𝐵𝐴) → (𝑥𝐵 → (𝐵 ∈ (𝐴𝐵) ∧ 𝑥𝐵)))
1312adantr 480 . . . . 5 (((Ord 𝐴𝐵𝐴) ∧ 𝑥𝐴) → (𝑥𝐵 → (𝐵 ∈ (𝐴𝐵) ∧ 𝑥𝐵)))
14 sseq2 4010 . . . . . 6 (𝑦 = 𝐵 → (𝑥𝑦𝑥𝐵))
1514rspcev 3622 . . . . 5 ((𝐵 ∈ (𝐴𝐵) ∧ 𝑥𝐵) → ∃𝑦 ∈ (𝐴𝐵)𝑥𝑦)
1613, 15syl6 35 . . . 4 (((Ord 𝐴𝐵𝐴) ∧ 𝑥𝐴) → (𝑥𝐵 → ∃𝑦 ∈ (𝐴𝐵)𝑥𝑦))
17 eldif 3961 . . . . . . . . 9 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
1817biimpri 228 . . . . . . . 8 ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → 𝑥 ∈ (𝐴𝐵))
19 ssid 4006 . . . . . . . 8 𝑥𝑥
2018, 19jctir 520 . . . . . . 7 ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → (𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝑥))
2120ex 412 . . . . . 6 (𝑥𝐴 → (¬ 𝑥𝐵 → (𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝑥)))
22 sseq2 4010 . . . . . . 7 (𝑦 = 𝑥 → (𝑥𝑦𝑥𝑥))
2322rspcev 3622 . . . . . 6 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝑥) → ∃𝑦 ∈ (𝐴𝐵)𝑥𝑦)
2421, 23syl6 35 . . . . 5 (𝑥𝐴 → (¬ 𝑥𝐵 → ∃𝑦 ∈ (𝐴𝐵)𝑥𝑦))
2524adantl 481 . . . 4 (((Ord 𝐴𝐵𝐴) ∧ 𝑥𝐴) → (¬ 𝑥𝐵 → ∃𝑦 ∈ (𝐴𝐵)𝑥𝑦))
2616, 25pm2.61d 179 . . 3 (((Ord 𝐴𝐵𝐴) ∧ 𝑥𝐴) → ∃𝑦 ∈ (𝐴𝐵)𝑥𝑦)
2726ralrimiva 3146 . 2 ((Ord 𝐴𝐵𝐴) → ∀𝑥𝐴𝑦 ∈ (𝐴𝐵)𝑥𝑦)
28 unidif 4942 . 2 (∀𝑥𝐴𝑦 ∈ (𝐴𝐵)𝑥𝑦 (𝐴𝐵) = 𝐴)
2927, 28syl 17 1 ((Ord 𝐴𝐵𝐴) → (𝐴𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061  wrex 3070  cdif 3948  wss 3951   cuni 4907  Ord word 6383  Oncon0 6384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-tr 5260  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-ord 6387  df-on 6388
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator