Step | Hyp | Ref
| Expression |
1 | | ordelon 6275 |
. . . . . . . 8
⊢ ((Ord
𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) |
2 | | onelss 6293 |
. . . . . . . 8
⊢ (𝐵 ∈ On → (𝑥 ∈ 𝐵 → 𝑥 ⊆ 𝐵)) |
3 | 1, 2 | syl 17 |
. . . . . . 7
⊢ ((Ord
𝐴 ∧ 𝐵 ∈ 𝐴) → (𝑥 ∈ 𝐵 → 𝑥 ⊆ 𝐵)) |
4 | | eloni 6261 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ On → Ord 𝐵) |
5 | | ordirr 6269 |
. . . . . . . . . . 11
⊢ (Ord
𝐵 → ¬ 𝐵 ∈ 𝐵) |
6 | 4, 5 | syl 17 |
. . . . . . . . . 10
⊢ (𝐵 ∈ On → ¬ 𝐵 ∈ 𝐵) |
7 | | eldif 3893 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ (𝐴 ∖ 𝐵) ↔ (𝐵 ∈ 𝐴 ∧ ¬ 𝐵 ∈ 𝐵)) |
8 | 7 | simplbi2 500 |
. . . . . . . . . 10
⊢ (𝐵 ∈ 𝐴 → (¬ 𝐵 ∈ 𝐵 → 𝐵 ∈ (𝐴 ∖ 𝐵))) |
9 | 6, 8 | syl5 34 |
. . . . . . . . 9
⊢ (𝐵 ∈ 𝐴 → (𝐵 ∈ On → 𝐵 ∈ (𝐴 ∖ 𝐵))) |
10 | 9 | adantl 481 |
. . . . . . . 8
⊢ ((Ord
𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐵 ∈ On → 𝐵 ∈ (𝐴 ∖ 𝐵))) |
11 | 1, 10 | mpd 15 |
. . . . . . 7
⊢ ((Ord
𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ (𝐴 ∖ 𝐵)) |
12 | 3, 11 | jctild 525 |
. . . . . 6
⊢ ((Ord
𝐴 ∧ 𝐵 ∈ 𝐴) → (𝑥 ∈ 𝐵 → (𝐵 ∈ (𝐴 ∖ 𝐵) ∧ 𝑥 ⊆ 𝐵))) |
13 | 12 | adantr 480 |
. . . . 5
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐵 → (𝐵 ∈ (𝐴 ∖ 𝐵) ∧ 𝑥 ⊆ 𝐵))) |
14 | | sseq2 3943 |
. . . . . 6
⊢ (𝑦 = 𝐵 → (𝑥 ⊆ 𝑦 ↔ 𝑥 ⊆ 𝐵)) |
15 | 14 | rspcev 3552 |
. . . . 5
⊢ ((𝐵 ∈ (𝐴 ∖ 𝐵) ∧ 𝑥 ⊆ 𝐵) → ∃𝑦 ∈ (𝐴 ∖ 𝐵)𝑥 ⊆ 𝑦) |
16 | 13, 15 | syl6 35 |
. . . 4
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐵 → ∃𝑦 ∈ (𝐴 ∖ 𝐵)𝑥 ⊆ 𝑦)) |
17 | | eldif 3893 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) |
18 | 17 | biimpri 227 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) → 𝑥 ∈ (𝐴 ∖ 𝐵)) |
19 | | ssid 3939 |
. . . . . . . 8
⊢ 𝑥 ⊆ 𝑥 |
20 | 18, 19 | jctir 520 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) → (𝑥 ∈ (𝐴 ∖ 𝐵) ∧ 𝑥 ⊆ 𝑥)) |
21 | 20 | ex 412 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴 → (¬ 𝑥 ∈ 𝐵 → (𝑥 ∈ (𝐴 ∖ 𝐵) ∧ 𝑥 ⊆ 𝑥))) |
22 | | sseq2 3943 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → (𝑥 ⊆ 𝑦 ↔ 𝑥 ⊆ 𝑥)) |
23 | 22 | rspcev 3552 |
. . . . . 6
⊢ ((𝑥 ∈ (𝐴 ∖ 𝐵) ∧ 𝑥 ⊆ 𝑥) → ∃𝑦 ∈ (𝐴 ∖ 𝐵)𝑥 ⊆ 𝑦) |
24 | 21, 23 | syl6 35 |
. . . . 5
⊢ (𝑥 ∈ 𝐴 → (¬ 𝑥 ∈ 𝐵 → ∃𝑦 ∈ (𝐴 ∖ 𝐵)𝑥 ⊆ 𝑦)) |
25 | 24 | adantl 481 |
. . . 4
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → (¬ 𝑥 ∈ 𝐵 → ∃𝑦 ∈ (𝐴 ∖ 𝐵)𝑥 ⊆ 𝑦)) |
26 | 16, 25 | pm2.61d 179 |
. . 3
⊢ (((Ord
𝐴 ∧ 𝐵 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ (𝐴 ∖ 𝐵)𝑥 ⊆ 𝑦) |
27 | 26 | ralrimiva 3107 |
. 2
⊢ ((Ord
𝐴 ∧ 𝐵 ∈ 𝐴) → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (𝐴 ∖ 𝐵)𝑥 ⊆ 𝑦) |
28 | | unidif 4872 |
. 2
⊢
(∀𝑥 ∈
𝐴 ∃𝑦 ∈ (𝐴 ∖ 𝐵)𝑥 ⊆ 𝑦 → ∪ (𝐴 ∖ 𝐵) = ∪ 𝐴) |
29 | 27, 28 | syl 17 |
1
⊢ ((Ord
𝐴 ∧ 𝐵 ∈ 𝐴) → ∪ (𝐴 ∖ 𝐵) = ∪ 𝐴) |