Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unilbeu Structured version   Visualization version   GIF version

Theorem unilbeu 45887
Description: Existential uniqueness of the greatest lower bound. (Contributed by Zhi Wang, 29-Sep-2024.)
Assertion
Ref Expression
unilbeu (𝐶𝐵 → ((𝐶𝐴 ∧ ∀𝑦𝐵 (𝑦𝐴𝑦𝐶)) ↔ 𝐶 = {𝑥𝐵𝑥𝐴}))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑦,𝐶
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem unilbeu
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sseq1 3912 . . . . . . 7 (𝑧 = 𝐶 → (𝑧𝐴𝐶𝐴))
2 simpll 767 . . . . . . 7 (((𝐶𝐵𝐶𝐴) ∧ ∀𝑦𝐵 (𝑦𝐴𝑦𝐶)) → 𝐶𝐵)
3 simplr 769 . . . . . . 7 (((𝐶𝐵𝐶𝐴) ∧ ∀𝑦𝐵 (𝑦𝐴𝑦𝐶)) → 𝐶𝐴)
41, 2, 3elrabd 3593 . . . . . 6 (((𝐶𝐵𝐶𝐴) ∧ ∀𝑦𝐵 (𝑦𝐴𝑦𝐶)) → 𝐶 ∈ {𝑧𝐵𝑧𝐴})
5 sseq1 3912 . . . . . . 7 (𝑧 = 𝑥 → (𝑧𝐴𝑥𝐴))
65cbvrabv 3392 . . . . . 6 {𝑧𝐵𝑧𝐴} = {𝑥𝐵𝑥𝐴}
74, 6eleqtrdi 2841 . . . . 5 (((𝐶𝐵𝐶𝐴) ∧ ∀𝑦𝐵 (𝑦𝐴𝑦𝐶)) → 𝐶 ∈ {𝑥𝐵𝑥𝐴})
8 elssuni 4837 . . . . 5 (𝐶 ∈ {𝑥𝐵𝑥𝐴} → 𝐶 {𝑥𝐵𝑥𝐴})
97, 8syl 17 . . . 4 (((𝐶𝐵𝐶𝐴) ∧ ∀𝑦𝐵 (𝑦𝐴𝑦𝐶)) → 𝐶 {𝑥𝐵𝑥𝐴})
10 unissb 4839 . . . . . . 7 ( {𝑥𝐵𝑥𝐴} ⊆ 𝐶 ↔ ∀𝑦 ∈ {𝑥𝐵𝑥𝐴}𝑦𝐶)
11 sseq1 3912 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
1211ralrab 3596 . . . . . . 7 (∀𝑦 ∈ {𝑥𝐵𝑥𝐴}𝑦𝐶 ↔ ∀𝑦𝐵 (𝑦𝐴𝑦𝐶))
1310, 12bitri 278 . . . . . 6 ( {𝑥𝐵𝑥𝐴} ⊆ 𝐶 ↔ ∀𝑦𝐵 (𝑦𝐴𝑦𝐶))
1413biimpri 231 . . . . 5 (∀𝑦𝐵 (𝑦𝐴𝑦𝐶) → {𝑥𝐵𝑥𝐴} ⊆ 𝐶)
1514adantl 485 . . . 4 (((𝐶𝐵𝐶𝐴) ∧ ∀𝑦𝐵 (𝑦𝐴𝑦𝐶)) → {𝑥𝐵𝑥𝐴} ⊆ 𝐶)
169, 15eqssd 3904 . . 3 (((𝐶𝐵𝐶𝐴) ∧ ∀𝑦𝐵 (𝑦𝐴𝑦𝐶)) → 𝐶 = {𝑥𝐵𝑥𝐴})
1716expl 461 . 2 (𝐶𝐵 → ((𝐶𝐴 ∧ ∀𝑦𝐵 (𝑦𝐴𝑦𝐶)) → 𝐶 = {𝑥𝐵𝑥𝐴}))
18 unilbss 45779 . . . 4 {𝑥𝐵𝑥𝐴} ⊆ 𝐴
19 sseq1 3912 . . . 4 (𝐶 = {𝑥𝐵𝑥𝐴} → (𝐶𝐴 {𝑥𝐵𝑥𝐴} ⊆ 𝐴))
2018, 19mpbiri 261 . . 3 (𝐶 = {𝑥𝐵𝑥𝐴} → 𝐶𝐴)
21 eqimss2 3944 . . . 4 (𝐶 = {𝑥𝐵𝑥𝐴} → {𝑥𝐵𝑥𝐴} ⊆ 𝐶)
2221, 13sylib 221 . . 3 (𝐶 = {𝑥𝐵𝑥𝐴} → ∀𝑦𝐵 (𝑦𝐴𝑦𝐶))
2320, 22jca 515 . 2 (𝐶 = {𝑥𝐵𝑥𝐴} → (𝐶𝐴 ∧ ∀𝑦𝐵 (𝑦𝐴𝑦𝐶)))
2417, 23impbid1 228 1 (𝐶𝐵 → ((𝐶𝐴 ∧ ∀𝑦𝐵 (𝑦𝐴𝑦𝐶)) ↔ 𝐶 = {𝑥𝐵𝑥𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  wral 3051  {crab 3055  wss 3853   cuni 4805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-11 2160  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-ex 1788  df-sb 2073  df-clab 2715  df-cleq 2728  df-clel 2809  df-ral 3056  df-rab 3060  df-v 3400  df-in 3860  df-ss 3870  df-uni 4806
This theorem is referenced by:  ipoglbdm  45892  ipoglb  45893
  Copyright terms: Public domain W3C validator