| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssintub | Structured version Visualization version GIF version | ||
| Description: Subclass of the least upper bound. (Contributed by NM, 8-Aug-2000.) |
| Ref | Expression |
|---|---|
| ssintub | ⊢ 𝐴 ⊆ ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssint 4924 | . 2 ⊢ (𝐴 ⊆ ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} ↔ ∀𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥}𝐴 ⊆ 𝑦) | |
| 2 | sseq2 3970 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝑦)) | |
| 3 | 2 | elrab 3656 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} ↔ (𝑦 ∈ 𝐵 ∧ 𝐴 ⊆ 𝑦)) |
| 4 | 3 | simprbi 496 | . 2 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} → 𝐴 ⊆ 𝑦) |
| 5 | 1, 4 | mprgbir 3051 | 1 ⊢ 𝐴 ⊆ ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 {crab 3402 ⊆ wss 3911 ∩ cint 4906 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rab 3403 df-v 3446 df-ss 3928 df-int 4907 |
| This theorem is referenced by: intmin 4928 cofon2 8614 naddunif 8634 wuncid 10672 mrcssid 17554 rgspnssid 20499 lspssid 20867 lbsextlem3 21046 aspssid 21763 sscls 22919 filufint 23783 spanss2 31247 shsval2i 31289 ococin 31310 chsupsn 31315 fldgenssid 33236 sssigagen 34108 dynkin 34130 igenss 38029 pclssidN 39862 dochocss 41333 intubeu 48945 |
| Copyright terms: Public domain | W3C validator |