MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssintub Structured version   Visualization version   GIF version

Theorem ssintub 4942
Description: Subclass of the least upper bound. (Contributed by NM, 8-Aug-2000.)
Assertion
Ref Expression
ssintub 𝐴 {𝑥𝐵𝐴𝑥}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ssintub
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssint 4940 . 2 (𝐴 {𝑥𝐵𝐴𝑥} ↔ ∀𝑦 ∈ {𝑥𝐵𝐴𝑥}𝐴𝑦)
2 sseq2 3985 . . . 4 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
32elrab 3671 . . 3 (𝑦 ∈ {𝑥𝐵𝐴𝑥} ↔ (𝑦𝐵𝐴𝑦))
43simprbi 496 . 2 (𝑦 ∈ {𝑥𝐵𝐴𝑥} → 𝐴𝑦)
51, 4mprgbir 3058 1 𝐴 {𝑥𝐵𝐴𝑥}
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  {crab 3415  wss 3926   cint 4922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2157  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rab 3416  df-v 3461  df-ss 3943  df-int 4923
This theorem is referenced by:  intmin  4944  cofon2  8685  naddunif  8705  wuncid  10757  mrcssid  17629  rgspnssid  20574  lspssid  20942  lbsextlem3  21121  aspssid  21838  sscls  22994  filufint  23858  spanss2  31326  shsval2i  31368  ococin  31389  chsupsn  31394  fldgenssid  33307  sssigagen  34176  dynkin  34198  igenss  38086  pclssidN  39914  dochocss  41385  intubeu  48958
  Copyright terms: Public domain W3C validator