| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssintub | Structured version Visualization version GIF version | ||
| Description: Subclass of the least upper bound. (Contributed by NM, 8-Aug-2000.) |
| Ref | Expression |
|---|---|
| ssintub | ⊢ 𝐴 ⊆ ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssint 4931 | . 2 ⊢ (𝐴 ⊆ ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} ↔ ∀𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥}𝐴 ⊆ 𝑦) | |
| 2 | sseq2 3976 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝑦)) | |
| 3 | 2 | elrab 3662 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} ↔ (𝑦 ∈ 𝐵 ∧ 𝐴 ⊆ 𝑦)) |
| 4 | 3 | simprbi 496 | . 2 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} → 𝐴 ⊆ 𝑦) |
| 5 | 1, 4 | mprgbir 3052 | 1 ⊢ 𝐴 ⊆ ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 {crab 3408 ⊆ wss 3917 ∩ cint 4913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rab 3409 df-v 3452 df-ss 3934 df-int 4914 |
| This theorem is referenced by: intmin 4935 cofon2 8640 naddunif 8660 wuncid 10703 mrcssid 17585 rgspnssid 20530 lspssid 20898 lbsextlem3 21077 aspssid 21794 sscls 22950 filufint 23814 spanss2 31281 shsval2i 31323 ococin 31344 chsupsn 31349 fldgenssid 33270 sssigagen 34142 dynkin 34164 igenss 38063 pclssidN 39896 dochocss 41367 intubeu 48976 |
| Copyright terms: Public domain | W3C validator |