MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssintub Structured version   Visualization version   GIF version

Theorem ssintub 4919
Description: Subclass of the least upper bound. (Contributed by NM, 8-Aug-2000.)
Assertion
Ref Expression
ssintub 𝐴 {𝑥𝐵𝐴𝑥}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ssintub
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssint 4917 . 2 (𝐴 {𝑥𝐵𝐴𝑥} ↔ ∀𝑦 ∈ {𝑥𝐵𝐴𝑥}𝐴𝑦)
2 sseq2 3964 . . . 4 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
32elrab 3650 . . 3 (𝑦 ∈ {𝑥𝐵𝐴𝑥} ↔ (𝑦𝐵𝐴𝑦))
43simprbi 496 . 2 (𝑦 ∈ {𝑥𝐵𝐴𝑥} → 𝐴𝑦)
51, 4mprgbir 3051 1 𝐴 {𝑥𝐵𝐴𝑥}
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  {crab 3396  wss 3905   cint 4899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3397  df-v 3440  df-ss 3922  df-int 4900
This theorem is referenced by:  intmin  4921  cofon2  8598  naddunif  8618  wuncid  10656  mrcssid  17542  rgspnssid  20518  lspssid  20907  lbsextlem3  21086  aspssid  21804  sscls  22960  filufint  23824  spanss2  31308  shsval2i  31350  ococin  31371  chsupsn  31376  fldgenssid  33271  sssigagen  34131  dynkin  34153  igenss  38061  pclssidN  39894  dochocss  41365  intubeu  48988
  Copyright terms: Public domain W3C validator