MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssintub Structured version   Visualization version   GIF version

Theorem ssintub 4926
Description: Subclass of the least upper bound. (Contributed by NM, 8-Aug-2000.)
Assertion
Ref Expression
ssintub 𝐴 {𝑥𝐵𝐴𝑥}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ssintub
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssint 4924 . 2 (𝐴 {𝑥𝐵𝐴𝑥} ↔ ∀𝑦 ∈ {𝑥𝐵𝐴𝑥}𝐴𝑦)
2 sseq2 3970 . . . 4 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
32elrab 3656 . . 3 (𝑦 ∈ {𝑥𝐵𝐴𝑥} ↔ (𝑦𝐵𝐴𝑦))
43simprbi 496 . 2 (𝑦 ∈ {𝑥𝐵𝐴𝑥} → 𝐴𝑦)
51, 4mprgbir 3051 1 𝐴 {𝑥𝐵𝐴𝑥}
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  {crab 3402  wss 3911   cint 4906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3403  df-v 3446  df-ss 3928  df-int 4907
This theorem is referenced by:  intmin  4928  cofon2  8614  naddunif  8634  wuncid  10672  mrcssid  17554  rgspnssid  20499  lspssid  20867  lbsextlem3  21046  aspssid  21763  sscls  22919  filufint  23783  spanss2  31247  shsval2i  31289  ococin  31310  chsupsn  31315  fldgenssid  33236  sssigagen  34108  dynkin  34130  igenss  38029  pclssidN  39862  dochocss  41333  intubeu  48945
  Copyright terms: Public domain W3C validator