MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssintub Structured version   Visualization version   GIF version

Theorem ssintub 4969
Description: Subclass of the least upper bound. (Contributed by NM, 8-Aug-2000.)
Assertion
Ref Expression
ssintub 𝐴 {𝑥𝐵𝐴𝑥}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ssintub
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssint 4967 . 2 (𝐴 {𝑥𝐵𝐴𝑥} ↔ ∀𝑦 ∈ {𝑥𝐵𝐴𝑥}𝐴𝑦)
2 sseq2 4007 . . . 4 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
32elrab 3682 . . 3 (𝑦 ∈ {𝑥𝐵𝐴𝑥} ↔ (𝑦𝐵𝐴𝑦))
43simprbi 495 . 2 (𝑦 ∈ {𝑥𝐵𝐴𝑥} → 𝐴𝑦)
51, 4mprgbir 3066 1 𝐴 {𝑥𝐵𝐴𝑥}
Colors of variables: wff setvar class
Syntax hints:  wcel 2104  {crab 3430  wss 3947   cint 4949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-11 2152  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-rab 3431  df-v 3474  df-in 3954  df-ss 3964  df-int 4950
This theorem is referenced by:  intmin  4971  cofon2  8674  naddunif  8694  wuncid  10740  mrcssid  17565  lspssid  20740  lbsextlem3  20918  aspssid  21651  sscls  22780  filufint  23644  spanss2  30865  shsval2i  30907  ococin  30928  chsupsn  30933  fldgenssid  32673  sssigagen  33441  dynkin  33463  igenss  37233  pclssidN  39069  dochocss  40540  rgspnssid  42214  intubeu  47696
  Copyright terms: Public domain W3C validator