Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssintub | Structured version Visualization version GIF version |
Description: Subclass of the least upper bound. (Contributed by NM, 8-Aug-2000.) |
Ref | Expression |
---|---|
ssintub | ⊢ 𝐴 ⊆ ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssint 4892 | . 2 ⊢ (𝐴 ⊆ ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} ↔ ∀𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥}𝐴 ⊆ 𝑦) | |
2 | sseq2 3943 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝑦)) | |
3 | 2 | elrab 3617 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} ↔ (𝑦 ∈ 𝐵 ∧ 𝐴 ⊆ 𝑦)) |
4 | 3 | simprbi 496 | . 2 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} → 𝐴 ⊆ 𝑦) |
5 | 1, 4 | mprgbir 3078 | 1 ⊢ 𝐴 ⊆ ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 {crab 3067 ⊆ wss 3883 ∩ cint 4876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-int 4877 |
This theorem is referenced by: intmin 4896 wuncid 10430 mrcssid 17243 lspssid 20162 lbsextlem3 20337 aspssid 20992 sscls 22115 filufint 22979 spanss2 29608 shsval2i 29650 ococin 29671 chsupsn 29676 sssigagen 32013 dynkin 32035 igenss 36147 pclssidN 37836 dochocss 39307 rgspnssid 40911 intubeu 46158 |
Copyright terms: Public domain | W3C validator |