| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssintub | Structured version Visualization version GIF version | ||
| Description: Subclass of the least upper bound. (Contributed by NM, 8-Aug-2000.) |
| Ref | Expression |
|---|---|
| ssintub | ⊢ 𝐴 ⊆ ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssint 4912 | . 2 ⊢ (𝐴 ⊆ ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} ↔ ∀𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥}𝐴 ⊆ 𝑦) | |
| 2 | sseq2 3956 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝑦)) | |
| 3 | 2 | elrab 3642 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} ↔ (𝑦 ∈ 𝐵 ∧ 𝐴 ⊆ 𝑦)) |
| 4 | 3 | simprbi 496 | . 2 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} → 𝐴 ⊆ 𝑦) |
| 5 | 1, 4 | mprgbir 3054 | 1 ⊢ 𝐴 ⊆ ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 {crab 3395 ⊆ wss 3897 ∩ cint 4895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rab 3396 df-v 3438 df-ss 3914 df-int 4896 |
| This theorem is referenced by: intmin 4916 cofon2 8588 naddunif 8608 wuncid 10634 mrcssid 17523 rgspnssid 20529 lspssid 20918 lbsextlem3 21097 aspssid 21815 sscls 22971 filufint 23835 spanss2 31325 shsval2i 31367 ococin 31388 chsupsn 31393 fldgenssid 33279 sssigagen 34158 dynkin 34180 igenss 38110 pclssidN 39942 dochocss 41413 intubeu 49023 |
| Copyright terms: Public domain | W3C validator |