Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssintub | Structured version Visualization version GIF version |
Description: Subclass of the least upper bound. (Contributed by NM, 8-Aug-2000.) |
Ref | Expression |
---|---|
ssintub | ⊢ 𝐴 ⊆ ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssint 4895 | . 2 ⊢ (𝐴 ⊆ ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} ↔ ∀𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥}𝐴 ⊆ 𝑦) | |
2 | sseq2 3947 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝑦)) | |
3 | 2 | elrab 3624 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} ↔ (𝑦 ∈ 𝐵 ∧ 𝐴 ⊆ 𝑦)) |
4 | 3 | simprbi 497 | . 2 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} → 𝐴 ⊆ 𝑦) |
5 | 1, 4 | mprgbir 3079 | 1 ⊢ 𝐴 ⊆ ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 {crab 3068 ⊆ wss 3887 ∩ cint 4879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rab 3073 df-v 3434 df-in 3894 df-ss 3904 df-int 4880 |
This theorem is referenced by: intmin 4899 wuncid 10499 mrcssid 17326 lspssid 20247 lbsextlem3 20422 aspssid 21082 sscls 22207 filufint 23071 spanss2 29707 shsval2i 29749 ococin 29770 chsupsn 29775 sssigagen 32113 dynkin 32135 igenss 36220 pclssidN 37909 dochocss 39380 rgspnssid 40995 intubeu 46270 |
Copyright terms: Public domain | W3C validator |