| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssintub | Structured version Visualization version GIF version | ||
| Description: Subclass of the least upper bound. (Contributed by NM, 8-Aug-2000.) |
| Ref | Expression |
|---|---|
| ssintub | ⊢ 𝐴 ⊆ ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssint 4917 | . 2 ⊢ (𝐴 ⊆ ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} ↔ ∀𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥}𝐴 ⊆ 𝑦) | |
| 2 | sseq2 3964 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝑦)) | |
| 3 | 2 | elrab 3650 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} ↔ (𝑦 ∈ 𝐵 ∧ 𝐴 ⊆ 𝑦)) |
| 4 | 3 | simprbi 496 | . 2 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} → 𝐴 ⊆ 𝑦) |
| 5 | 1, 4 | mprgbir 3051 | 1 ⊢ 𝐴 ⊆ ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 {crab 3396 ⊆ wss 3905 ∩ cint 4899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rab 3397 df-v 3440 df-ss 3922 df-int 4900 |
| This theorem is referenced by: intmin 4921 cofon2 8598 naddunif 8618 wuncid 10656 mrcssid 17542 rgspnssid 20518 lspssid 20907 lbsextlem3 21086 aspssid 21804 sscls 22960 filufint 23824 spanss2 31308 shsval2i 31350 ococin 31371 chsupsn 31376 fldgenssid 33271 sssigagen 34131 dynkin 34153 igenss 38061 pclssidN 39894 dochocss 41365 intubeu 48988 |
| Copyright terms: Public domain | W3C validator |