MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssintub Structured version   Visualization version   GIF version

Theorem ssintub 4933
Description: Subclass of the least upper bound. (Contributed by NM, 8-Aug-2000.)
Assertion
Ref Expression
ssintub 𝐴 {𝑥𝐵𝐴𝑥}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ssintub
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssint 4931 . 2 (𝐴 {𝑥𝐵𝐴𝑥} ↔ ∀𝑦 ∈ {𝑥𝐵𝐴𝑥}𝐴𝑦)
2 sseq2 3976 . . . 4 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
32elrab 3662 . . 3 (𝑦 ∈ {𝑥𝐵𝐴𝑥} ↔ (𝑦𝐵𝐴𝑦))
43simprbi 496 . 2 (𝑦 ∈ {𝑥𝐵𝐴𝑥} → 𝐴𝑦)
51, 4mprgbir 3052 1 𝐴 {𝑥𝐵𝐴𝑥}
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  {crab 3408  wss 3917   cint 4913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rab 3409  df-v 3452  df-ss 3934  df-int 4914
This theorem is referenced by:  intmin  4935  cofon2  8640  naddunif  8660  wuncid  10703  mrcssid  17585  rgspnssid  20530  lspssid  20898  lbsextlem3  21077  aspssid  21794  sscls  22950  filufint  23814  spanss2  31281  shsval2i  31323  ococin  31344  chsupsn  31349  fldgenssid  33270  sssigagen  34142  dynkin  34164  igenss  38063  pclssidN  39896  dochocss  41367  intubeu  48976
  Copyright terms: Public domain W3C validator