| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssintub | Structured version Visualization version GIF version | ||
| Description: Subclass of the least upper bound. (Contributed by NM, 8-Aug-2000.) |
| Ref | Expression |
|---|---|
| ssintub | ⊢ 𝐴 ⊆ ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssint 4940 | . 2 ⊢ (𝐴 ⊆ ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} ↔ ∀𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥}𝐴 ⊆ 𝑦) | |
| 2 | sseq2 3985 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝑦)) | |
| 3 | 2 | elrab 3671 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} ↔ (𝑦 ∈ 𝐵 ∧ 𝐴 ⊆ 𝑦)) |
| 4 | 3 | simprbi 496 | . 2 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} → 𝐴 ⊆ 𝑦) |
| 5 | 1, 4 | mprgbir 3058 | 1 ⊢ 𝐴 ⊆ ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 {crab 3415 ⊆ wss 3926 ∩ cint 4922 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2157 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rab 3416 df-v 3461 df-ss 3943 df-int 4923 |
| This theorem is referenced by: intmin 4944 cofon2 8685 naddunif 8705 wuncid 10757 mrcssid 17629 rgspnssid 20574 lspssid 20942 lbsextlem3 21121 aspssid 21838 sscls 22994 filufint 23858 spanss2 31326 shsval2i 31368 ococin 31389 chsupsn 31394 fldgenssid 33307 sssigagen 34176 dynkin 34198 igenss 38086 pclssidN 39914 dochocss 41385 intubeu 48958 |
| Copyright terms: Public domain | W3C validator |