Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inpw Structured version   Visualization version   GIF version

Theorem inpw 48550
Description: Two ways of expressing a collection of subsets as seen in df-ntr 23049, unimax 4968, and others (Contributed by Zhi Wang, 27-Sep-2024.)
Assertion
Ref Expression
inpw (𝐵𝑉 → (𝐴 ∩ 𝒫 𝐵) = {𝑥𝐴𝑥𝐵})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑉

Proof of Theorem inpw
StepHypRef Expression
1 dfin5 3984 . 2 (𝐴 ∩ 𝒫 𝐵) = {𝑥𝐴𝑥 ∈ 𝒫 𝐵}
2 elpw2g 5351 . . 3 (𝐵𝑉 → (𝑥 ∈ 𝒫 𝐵𝑥𝐵))
32rabbidv 3451 . 2 (𝐵𝑉 → {𝑥𝐴𝑥 ∈ 𝒫 𝐵} = {𝑥𝐴𝑥𝐵})
41, 3eqtrid 2792 1 (𝐵𝑉 → (𝐴 ∩ 𝒫 𝐵) = {𝑥𝐴𝑥𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  {crab 3443  cin 3975  wss 3976  𝒫 cpw 4622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-in 3983  df-ss 3993  df-pw 4624
This theorem is referenced by:  toplatglb  48673
  Copyright terms: Public domain W3C validator