| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > inpw | Structured version Visualization version GIF version | ||
| Description: Two ways of expressing a collection of subsets as seen in df-ntr 22955, unimax 4897, and others (Contributed by Zhi Wang, 27-Sep-2024.) |
| Ref | Expression |
|---|---|
| inpw | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∩ 𝒫 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfin5 3906 | . 2 ⊢ (𝐴 ∩ 𝒫 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝒫 𝐵} | |
| 2 | elpw2g 5275 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵)) | |
| 3 | 2 | rabbidv 3403 | . 2 ⊢ (𝐵 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝒫 𝐵} = {𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝐵}) |
| 4 | 1, 3 | eqtrid 2780 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∩ 𝒫 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 {crab 3396 ∩ cin 3897 ⊆ wss 3898 𝒫 cpw 4551 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-in 3905 df-ss 3915 df-pw 4553 |
| This theorem is referenced by: toplatglb 49162 |
| Copyright terms: Public domain | W3C validator |