| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > inpw | Structured version Visualization version GIF version | ||
| Description: Two ways of expressing a collection of subsets as seen in df-ntr 22930, unimax 4890, and others (Contributed by Zhi Wang, 27-Sep-2024.) |
| Ref | Expression |
|---|---|
| inpw | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∩ 𝒫 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfin5 3905 | . 2 ⊢ (𝐴 ∩ 𝒫 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝒫 𝐵} | |
| 2 | elpw2g 5266 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵)) | |
| 3 | 2 | rabbidv 3402 | . 2 ⊢ (𝐵 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝒫 𝐵} = {𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝐵}) |
| 4 | 1, 3 | eqtrid 2778 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∩ 𝒫 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {crab 3395 ∩ cin 3896 ⊆ wss 3897 𝒫 cpw 4545 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-in 3904 df-ss 3914 df-pw 4547 |
| This theorem is referenced by: toplatglb 49032 |
| Copyright terms: Public domain | W3C validator |