Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inpw Structured version   Visualization version   GIF version

Theorem inpw 47880
Description: Two ways of expressing a collection of subsets as seen in df-ntr 22918, unimax 4943, and others (Contributed by Zhi Wang, 27-Sep-2024.)
Assertion
Ref Expression
inpw (𝐵𝑉 → (𝐴 ∩ 𝒫 𝐵) = {𝑥𝐴𝑥𝐵})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑉

Proof of Theorem inpw
StepHypRef Expression
1 dfin5 3953 . 2 (𝐴 ∩ 𝒫 𝐵) = {𝑥𝐴𝑥 ∈ 𝒫 𝐵}
2 elpw2g 5341 . . 3 (𝐵𝑉 → (𝑥 ∈ 𝒫 𝐵𝑥𝐵))
32rabbidv 3436 . 2 (𝐵𝑉 → {𝑥𝐴𝑥 ∈ 𝒫 𝐵} = {𝑥𝐴𝑥𝐵})
41, 3eqtrid 2780 1 (𝐵𝑉 → (𝐴 ∩ 𝒫 𝐵) = {𝑥𝐴𝑥𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  {crab 3428  cin 3944  wss 3945  𝒫 cpw 4599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-sep 5294
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-rab 3429  df-v 3472  df-in 3952  df-ss 3962  df-pw 4601
This theorem is referenced by:  toplatglb  48003
  Copyright terms: Public domain W3C validator