Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inpw Structured version   Visualization version   GIF version

Theorem inpw 46164
Description: Two ways of expressing a collection of subsets as seen in df-ntr 22171, unimax 4877, and others (Contributed by Zhi Wang, 27-Sep-2024.)
Assertion
Ref Expression
inpw (𝐵𝑉 → (𝐴 ∩ 𝒫 𝐵) = {𝑥𝐴𝑥𝐵})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑉

Proof of Theorem inpw
StepHypRef Expression
1 dfin5 3895 . 2 (𝐴 ∩ 𝒫 𝐵) = {𝑥𝐴𝑥 ∈ 𝒫 𝐵}
2 elpw2g 5268 . . 3 (𝐵𝑉 → (𝑥 ∈ 𝒫 𝐵𝑥𝐵))
32rabbidv 3414 . 2 (𝐵𝑉 → {𝑥𝐴𝑥 ∈ 𝒫 𝐵} = {𝑥𝐴𝑥𝐵})
41, 3eqtrid 2790 1 (𝐵𝑉 → (𝐴 ∩ 𝒫 𝐵) = {𝑥𝐴𝑥𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  {crab 3068  cin 3886  wss 3887  𝒫 cpw 4533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-in 3894  df-ss 3904  df-pw 4535
This theorem is referenced by:  toplatglb  46287
  Copyright terms: Public domain W3C validator