Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inpw Structured version   Visualization version   GIF version

Theorem inpw 46052
Description: Two ways of expressing a collection of subsets as seen in df-ntr 22079, unimax 4874, and others (Contributed by Zhi Wang, 27-Sep-2024.)
Assertion
Ref Expression
inpw (𝐵𝑉 → (𝐴 ∩ 𝒫 𝐵) = {𝑥𝐴𝑥𝐵})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑉

Proof of Theorem inpw
StepHypRef Expression
1 dfin5 3891 . 2 (𝐴 ∩ 𝒫 𝐵) = {𝑥𝐴𝑥 ∈ 𝒫 𝐵}
2 elpw2g 5263 . . 3 (𝐵𝑉 → (𝑥 ∈ 𝒫 𝐵𝑥𝐵))
32rabbidv 3404 . 2 (𝐵𝑉 → {𝑥𝐴𝑥 ∈ 𝒫 𝐵} = {𝑥𝐴𝑥𝐵})
41, 3syl5eq 2791 1 (𝐵𝑉 → (𝐴 ∩ 𝒫 𝐵) = {𝑥𝐴𝑥𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  {crab 3067  cin 3882  wss 3883  𝒫 cpw 4530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-in 3890  df-ss 3900  df-pw 4532
This theorem is referenced by:  toplatglb  46175
  Copyright terms: Public domain W3C validator