| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > inpw | Structured version Visualization version GIF version | ||
| Description: Two ways of expressing a collection of subsets as seen in df-ntr 22914, unimax 4911, and others (Contributed by Zhi Wang, 27-Sep-2024.) |
| Ref | Expression |
|---|---|
| inpw | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∩ 𝒫 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfin5 3925 | . 2 ⊢ (𝐴 ∩ 𝒫 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝒫 𝐵} | |
| 2 | elpw2g 5291 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵)) | |
| 3 | 2 | rabbidv 3416 | . 2 ⊢ (𝐵 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝒫 𝐵} = {𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝐵}) |
| 4 | 1, 3 | eqtrid 2777 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∩ 𝒫 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3408 ∩ cin 3916 ⊆ wss 3917 𝒫 cpw 4566 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-in 3924 df-ss 3934 df-pw 4568 |
| This theorem is referenced by: toplatglb 48993 |
| Copyright terms: Public domain | W3C validator |