![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > inpw | Structured version Visualization version GIF version |
Description: Two ways of expressing a collection of subsets as seen in df-ntr 22918, unimax 4943, and others (Contributed by Zhi Wang, 27-Sep-2024.) |
Ref | Expression |
---|---|
inpw | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∩ 𝒫 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfin5 3953 | . 2 ⊢ (𝐴 ∩ 𝒫 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝒫 𝐵} | |
2 | elpw2g 5341 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵)) | |
3 | 2 | rabbidv 3436 | . 2 ⊢ (𝐵 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝒫 𝐵} = {𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝐵}) |
4 | 1, 3 | eqtrid 2780 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∩ 𝒫 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ⊆ 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 {crab 3428 ∩ cin 3944 ⊆ wss 3945 𝒫 cpw 4599 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5294 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3429 df-v 3472 df-in 3952 df-ss 3962 df-pw 4601 |
This theorem is referenced by: toplatglb 48003 |
Copyright terms: Public domain | W3C validator |