| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordunisuc | Structured version Visualization version GIF version | ||
| Description: An ordinal class is equal to the union of its successor. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| ordunisuc | ⊢ (Ord 𝐴 → ∪ suc 𝐴 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordeleqon 7781 | . 2 ⊢ (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On)) | |
| 2 | suceq 6424 | . . . . . 6 ⊢ (𝑥 = 𝐴 → suc 𝑥 = suc 𝐴) | |
| 3 | 2 | unieqd 4901 | . . . . 5 ⊢ (𝑥 = 𝐴 → ∪ suc 𝑥 = ∪ suc 𝐴) |
| 4 | id 22 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 5 | 3, 4 | eqeq12d 2752 | . . . 4 ⊢ (𝑥 = 𝐴 → (∪ suc 𝑥 = 𝑥 ↔ ∪ suc 𝐴 = 𝐴)) |
| 6 | eloni 6367 | . . . . . 6 ⊢ (𝑥 ∈ On → Ord 𝑥) | |
| 7 | ordtr 6371 | . . . . . 6 ⊢ (Ord 𝑥 → Tr 𝑥) | |
| 8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ On → Tr 𝑥) |
| 9 | vex 3468 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 10 | 9 | unisuc 6438 | . . . . 5 ⊢ (Tr 𝑥 ↔ ∪ suc 𝑥 = 𝑥) |
| 11 | 8, 10 | sylib 218 | . . . 4 ⊢ (𝑥 ∈ On → ∪ suc 𝑥 = 𝑥) |
| 12 | 5, 11 | vtoclga 3561 | . . 3 ⊢ (𝐴 ∈ On → ∪ suc 𝐴 = 𝐴) |
| 13 | sucon 7802 | . . . . . 6 ⊢ suc On = On | |
| 14 | 13 | unieqi 4900 | . . . . 5 ⊢ ∪ suc On = ∪ On |
| 15 | unon 7830 | . . . . 5 ⊢ ∪ On = On | |
| 16 | 14, 15 | eqtri 2759 | . . . 4 ⊢ ∪ suc On = On |
| 17 | suceq 6424 | . . . . 5 ⊢ (𝐴 = On → suc 𝐴 = suc On) | |
| 18 | 17 | unieqd 4901 | . . . 4 ⊢ (𝐴 = On → ∪ suc 𝐴 = ∪ suc On) |
| 19 | id 22 | . . . 4 ⊢ (𝐴 = On → 𝐴 = On) | |
| 20 | 16, 18, 19 | 3eqtr4a 2797 | . . 3 ⊢ (𝐴 = On → ∪ suc 𝐴 = 𝐴) |
| 21 | 12, 20 | jaoi 857 | . 2 ⊢ ((𝐴 ∈ On ∨ 𝐴 = On) → ∪ suc 𝐴 = 𝐴) |
| 22 | 1, 21 | sylbi 217 | 1 ⊢ (Ord 𝐴 → ∪ suc 𝐴 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∪ cuni 4888 Tr wtr 5234 Ord word 6356 Oncon0 6357 suc csuc 6359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-ord 6360 df-on 6361 df-suc 6363 |
| This theorem is referenced by: orduniss2 7832 onsucuni2 7833 nlimsucg 7842 tz7.44-2 8426 rnttrcl 9741 ttrclselem2 9745 ttukeylem7 10534 tsksuc 10781 nnuni 35749 dfrdg2 35818 ontgsucval 36455 onsuctopon 36457 limsucncmpi 36468 finxpsuclem 37420 |
| Copyright terms: Public domain | W3C validator |