MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordunisuc Structured version   Visualization version   GIF version

Theorem ordunisuc 7654
Description: An ordinal class is equal to the union of its successor. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ordunisuc (Ord 𝐴 suc 𝐴 = 𝐴)

Proof of Theorem ordunisuc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ordeleqon 7609 . 2 (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On))
2 suceq 6316 . . . . . 6 (𝑥 = 𝐴 → suc 𝑥 = suc 𝐴)
32unieqd 4850 . . . . 5 (𝑥 = 𝐴 suc 𝑥 = suc 𝐴)
4 id 22 . . . . 5 (𝑥 = 𝐴𝑥 = 𝐴)
53, 4eqeq12d 2754 . . . 4 (𝑥 = 𝐴 → ( suc 𝑥 = 𝑥 suc 𝐴 = 𝐴))
6 eloni 6261 . . . . . 6 (𝑥 ∈ On → Ord 𝑥)
7 ordtr 6265 . . . . . 6 (Ord 𝑥 → Tr 𝑥)
86, 7syl 17 . . . . 5 (𝑥 ∈ On → Tr 𝑥)
9 vex 3426 . . . . . 6 𝑥 ∈ V
109unisuc 6327 . . . . 5 (Tr 𝑥 suc 𝑥 = 𝑥)
118, 10sylib 217 . . . 4 (𝑥 ∈ On → suc 𝑥 = 𝑥)
125, 11vtoclga 3503 . . 3 (𝐴 ∈ On → suc 𝐴 = 𝐴)
13 sucon 7630 . . . . . 6 suc On = On
1413unieqi 4849 . . . . 5 suc On = On
15 unon 7653 . . . . 5 On = On
1614, 15eqtri 2766 . . . 4 suc On = On
17 suceq 6316 . . . . 5 (𝐴 = On → suc 𝐴 = suc On)
1817unieqd 4850 . . . 4 (𝐴 = On → suc 𝐴 = suc On)
19 id 22 . . . 4 (𝐴 = On → 𝐴 = On)
2016, 18, 193eqtr4a 2805 . . 3 (𝐴 = On → suc 𝐴 = 𝐴)
2112, 20jaoi 853 . 2 ((𝐴 ∈ On ∨ 𝐴 = On) → suc 𝐴 = 𝐴)
221, 21sylbi 216 1 (Ord 𝐴 suc 𝐴 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 843   = wceq 1539  wcel 2108   cuni 4836  Tr wtr 5187  Ord word 6250  Oncon0 6251  suc csuc 6253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-ord 6254  df-on 6255  df-suc 6257
This theorem is referenced by:  orduniss2  7655  onsucuni2  7656  nlimsucg  7664  tz7.44-2  8209  ttukeylem7  10202  tsksuc  10449  nnuni  33595  dfrdg2  33677  rnttrcl  33708  ttrclselem2  33712  ontgsucval  34548  onsuctopon  34550  limsucncmpi  34561  finxpsuclem  35495
  Copyright terms: Public domain W3C validator