Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordunisuc | Structured version Visualization version GIF version |
Description: An ordinal class is equal to the union of its successor. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
ordunisuc | ⊢ (Ord 𝐴 → ∪ suc 𝐴 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordeleqon 7632 | . 2 ⊢ (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On)) | |
2 | suceq 6331 | . . . . . 6 ⊢ (𝑥 = 𝐴 → suc 𝑥 = suc 𝐴) | |
3 | 2 | unieqd 4853 | . . . . 5 ⊢ (𝑥 = 𝐴 → ∪ suc 𝑥 = ∪ suc 𝐴) |
4 | id 22 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
5 | 3, 4 | eqeq12d 2754 | . . . 4 ⊢ (𝑥 = 𝐴 → (∪ suc 𝑥 = 𝑥 ↔ ∪ suc 𝐴 = 𝐴)) |
6 | eloni 6276 | . . . . . 6 ⊢ (𝑥 ∈ On → Ord 𝑥) | |
7 | ordtr 6280 | . . . . . 6 ⊢ (Ord 𝑥 → Tr 𝑥) | |
8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ On → Tr 𝑥) |
9 | vex 3436 | . . . . . 6 ⊢ 𝑥 ∈ V | |
10 | 9 | unisuc 6342 | . . . . 5 ⊢ (Tr 𝑥 ↔ ∪ suc 𝑥 = 𝑥) |
11 | 8, 10 | sylib 217 | . . . 4 ⊢ (𝑥 ∈ On → ∪ suc 𝑥 = 𝑥) |
12 | 5, 11 | vtoclga 3513 | . . 3 ⊢ (𝐴 ∈ On → ∪ suc 𝐴 = 𝐴) |
13 | sucon 7653 | . . . . . 6 ⊢ suc On = On | |
14 | 13 | unieqi 4852 | . . . . 5 ⊢ ∪ suc On = ∪ On |
15 | unon 7678 | . . . . 5 ⊢ ∪ On = On | |
16 | 14, 15 | eqtri 2766 | . . . 4 ⊢ ∪ suc On = On |
17 | suceq 6331 | . . . . 5 ⊢ (𝐴 = On → suc 𝐴 = suc On) | |
18 | 17 | unieqd 4853 | . . . 4 ⊢ (𝐴 = On → ∪ suc 𝐴 = ∪ suc On) |
19 | id 22 | . . . 4 ⊢ (𝐴 = On → 𝐴 = On) | |
20 | 16, 18, 19 | 3eqtr4a 2804 | . . 3 ⊢ (𝐴 = On → ∪ suc 𝐴 = 𝐴) |
21 | 12, 20 | jaoi 854 | . 2 ⊢ ((𝐴 ∈ On ∨ 𝐴 = On) → ∪ suc 𝐴 = 𝐴) |
22 | 1, 21 | sylbi 216 | 1 ⊢ (Ord 𝐴 → ∪ suc 𝐴 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 844 = wceq 1539 ∈ wcel 2106 ∪ cuni 4839 Tr wtr 5191 Ord word 6265 Oncon0 6266 suc csuc 6268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6269 df-on 6270 df-suc 6272 |
This theorem is referenced by: orduniss2 7680 onsucuni2 7681 nlimsucg 7689 tz7.44-2 8238 rnttrcl 9480 ttrclselem2 9484 ttukeylem7 10271 tsksuc 10518 nnuni 33692 dfrdg2 33771 ontgsucval 34621 onsuctopon 34623 limsucncmpi 34634 finxpsuclem 35568 |
Copyright terms: Public domain | W3C validator |