MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordunisuc Structured version   Visualization version   GIF version

Theorem ordunisuc 7810
Description: An ordinal class is equal to the union of its successor. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ordunisuc (Ord 𝐴 suc 𝐴 = 𝐴)

Proof of Theorem ordunisuc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ordeleqon 7761 . 2 (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On))
2 suceq 6403 . . . . . 6 (𝑥 = 𝐴 → suc 𝑥 = suc 𝐴)
32unieqd 4887 . . . . 5 (𝑥 = 𝐴 suc 𝑥 = suc 𝐴)
4 id 22 . . . . 5 (𝑥 = 𝐴𝑥 = 𝐴)
53, 4eqeq12d 2746 . . . 4 (𝑥 = 𝐴 → ( suc 𝑥 = 𝑥 suc 𝐴 = 𝐴))
6 eloni 6345 . . . . . 6 (𝑥 ∈ On → Ord 𝑥)
7 ordtr 6349 . . . . . 6 (Ord 𝑥 → Tr 𝑥)
86, 7syl 17 . . . . 5 (𝑥 ∈ On → Tr 𝑥)
9 vex 3454 . . . . . 6 𝑥 ∈ V
109unisuc 6416 . . . . 5 (Tr 𝑥 suc 𝑥 = 𝑥)
118, 10sylib 218 . . . 4 (𝑥 ∈ On → suc 𝑥 = 𝑥)
125, 11vtoclga 3546 . . 3 (𝐴 ∈ On → suc 𝐴 = 𝐴)
13 sucon 7782 . . . . . 6 suc On = On
1413unieqi 4886 . . . . 5 suc On = On
15 unon 7809 . . . . 5 On = On
1614, 15eqtri 2753 . . . 4 suc On = On
17 suceq 6403 . . . . 5 (𝐴 = On → suc 𝐴 = suc On)
1817unieqd 4887 . . . 4 (𝐴 = On → suc 𝐴 = suc On)
19 id 22 . . . 4 (𝐴 = On → 𝐴 = On)
2016, 18, 193eqtr4a 2791 . . 3 (𝐴 = On → suc 𝐴 = 𝐴)
2112, 20jaoi 857 . 2 ((𝐴 ∈ On ∨ 𝐴 = On) → suc 𝐴 = 𝐴)
221, 21sylbi 217 1 (Ord 𝐴 suc 𝐴 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1540  wcel 2109   cuni 4874  Tr wtr 5217  Ord word 6334  Oncon0 6335  suc csuc 6337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-tr 5218  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-ord 6338  df-on 6339  df-suc 6341
This theorem is referenced by:  orduniss2  7811  onsucuni2  7812  nlimsucg  7821  tz7.44-2  8378  rnttrcl  9682  ttrclselem2  9686  ttukeylem7  10475  tsksuc  10722  nnuni  35721  dfrdg2  35790  ontgsucval  36427  onsuctopon  36429  limsucncmpi  36440  finxpsuclem  37392
  Copyright terms: Public domain W3C validator