MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordunisuc Structured version   Visualization version   GIF version

Theorem ordunisuc 7807
Description: An ordinal class is equal to the union of its successor. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ordunisuc (Ord 𝐴 suc 𝐴 = 𝐴)

Proof of Theorem ordunisuc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ordeleqon 7758 . 2 (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On))
2 suceq 6400 . . . . . 6 (𝑥 = 𝐴 → suc 𝑥 = suc 𝐴)
32unieqd 4884 . . . . 5 (𝑥 = 𝐴 suc 𝑥 = suc 𝐴)
4 id 22 . . . . 5 (𝑥 = 𝐴𝑥 = 𝐴)
53, 4eqeq12d 2745 . . . 4 (𝑥 = 𝐴 → ( suc 𝑥 = 𝑥 suc 𝐴 = 𝐴))
6 eloni 6342 . . . . . 6 (𝑥 ∈ On → Ord 𝑥)
7 ordtr 6346 . . . . . 6 (Ord 𝑥 → Tr 𝑥)
86, 7syl 17 . . . . 5 (𝑥 ∈ On → Tr 𝑥)
9 vex 3451 . . . . . 6 𝑥 ∈ V
109unisuc 6413 . . . . 5 (Tr 𝑥 suc 𝑥 = 𝑥)
118, 10sylib 218 . . . 4 (𝑥 ∈ On → suc 𝑥 = 𝑥)
125, 11vtoclga 3543 . . 3 (𝐴 ∈ On → suc 𝐴 = 𝐴)
13 sucon 7779 . . . . . 6 suc On = On
1413unieqi 4883 . . . . 5 suc On = On
15 unon 7806 . . . . 5 On = On
1614, 15eqtri 2752 . . . 4 suc On = On
17 suceq 6400 . . . . 5 (𝐴 = On → suc 𝐴 = suc On)
1817unieqd 4884 . . . 4 (𝐴 = On → suc 𝐴 = suc On)
19 id 22 . . . 4 (𝐴 = On → 𝐴 = On)
2016, 18, 193eqtr4a 2790 . . 3 (𝐴 = On → suc 𝐴 = 𝐴)
2112, 20jaoi 857 . 2 ((𝐴 ∈ On ∨ 𝐴 = On) → suc 𝐴 = 𝐴)
221, 21sylbi 217 1 (Ord 𝐴 suc 𝐴 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1540  wcel 2109   cuni 4871  Tr wtr 5214  Ord word 6331  Oncon0 6332  suc csuc 6334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-ord 6335  df-on 6336  df-suc 6338
This theorem is referenced by:  orduniss2  7808  onsucuni2  7809  nlimsucg  7818  tz7.44-2  8375  rnttrcl  9675  ttrclselem2  9679  ttukeylem7  10468  tsksuc  10715  nnuni  35714  dfrdg2  35783  ontgsucval  36420  onsuctopon  36422  limsucncmpi  36433  finxpsuclem  37385
  Copyright terms: Public domain W3C validator