![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordunisuc | Structured version Visualization version GIF version |
Description: An ordinal class is equal to the union of its successor. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
ordunisuc | ⊢ (Ord 𝐴 → ∪ suc 𝐴 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordeleqon 7817 | . 2 ⊢ (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On)) | |
2 | suceq 6461 | . . . . . 6 ⊢ (𝑥 = 𝐴 → suc 𝑥 = suc 𝐴) | |
3 | 2 | unieqd 4944 | . . . . 5 ⊢ (𝑥 = 𝐴 → ∪ suc 𝑥 = ∪ suc 𝐴) |
4 | id 22 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
5 | 3, 4 | eqeq12d 2756 | . . . 4 ⊢ (𝑥 = 𝐴 → (∪ suc 𝑥 = 𝑥 ↔ ∪ suc 𝐴 = 𝐴)) |
6 | eloni 6405 | . . . . . 6 ⊢ (𝑥 ∈ On → Ord 𝑥) | |
7 | ordtr 6409 | . . . . . 6 ⊢ (Ord 𝑥 → Tr 𝑥) | |
8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ On → Tr 𝑥) |
9 | vex 3492 | . . . . . 6 ⊢ 𝑥 ∈ V | |
10 | 9 | unisuc 6474 | . . . . 5 ⊢ (Tr 𝑥 ↔ ∪ suc 𝑥 = 𝑥) |
11 | 8, 10 | sylib 218 | . . . 4 ⊢ (𝑥 ∈ On → ∪ suc 𝑥 = 𝑥) |
12 | 5, 11 | vtoclga 3589 | . . 3 ⊢ (𝐴 ∈ On → ∪ suc 𝐴 = 𝐴) |
13 | sucon 7839 | . . . . . 6 ⊢ suc On = On | |
14 | 13 | unieqi 4943 | . . . . 5 ⊢ ∪ suc On = ∪ On |
15 | unon 7867 | . . . . 5 ⊢ ∪ On = On | |
16 | 14, 15 | eqtri 2768 | . . . 4 ⊢ ∪ suc On = On |
17 | suceq 6461 | . . . . 5 ⊢ (𝐴 = On → suc 𝐴 = suc On) | |
18 | 17 | unieqd 4944 | . . . 4 ⊢ (𝐴 = On → ∪ suc 𝐴 = ∪ suc On) |
19 | id 22 | . . . 4 ⊢ (𝐴 = On → 𝐴 = On) | |
20 | 16, 18, 19 | 3eqtr4a 2806 | . . 3 ⊢ (𝐴 = On → ∪ suc 𝐴 = 𝐴) |
21 | 12, 20 | jaoi 856 | . 2 ⊢ ((𝐴 ∈ On ∨ 𝐴 = On) → ∪ suc 𝐴 = 𝐴) |
22 | 1, 21 | sylbi 217 | 1 ⊢ (Ord 𝐴 → ∪ suc 𝐴 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ∪ cuni 4931 Tr wtr 5283 Ord word 6394 Oncon0 6395 suc csuc 6397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 df-suc 6401 |
This theorem is referenced by: orduniss2 7869 onsucuni2 7870 nlimsucg 7879 tz7.44-2 8463 rnttrcl 9791 ttrclselem2 9795 ttukeylem7 10584 tsksuc 10831 nnuni 35689 dfrdg2 35759 ontgsucval 36398 onsuctopon 36400 limsucncmpi 36411 finxpsuclem 37363 |
Copyright terms: Public domain | W3C validator |