| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordunisuc | Structured version Visualization version GIF version | ||
| Description: An ordinal class is equal to the union of its successor. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| ordunisuc | ⊢ (Ord 𝐴 → ∪ suc 𝐴 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordeleqon 7738 | . 2 ⊢ (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On)) | |
| 2 | suceq 6388 | . . . . . 6 ⊢ (𝑥 = 𝐴 → suc 𝑥 = suc 𝐴) | |
| 3 | 2 | unieqd 4880 | . . . . 5 ⊢ (𝑥 = 𝐴 → ∪ suc 𝑥 = ∪ suc 𝐴) |
| 4 | id 22 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 5 | 3, 4 | eqeq12d 2745 | . . . 4 ⊢ (𝑥 = 𝐴 → (∪ suc 𝑥 = 𝑥 ↔ ∪ suc 𝐴 = 𝐴)) |
| 6 | eloni 6330 | . . . . . 6 ⊢ (𝑥 ∈ On → Ord 𝑥) | |
| 7 | ordtr 6334 | . . . . . 6 ⊢ (Ord 𝑥 → Tr 𝑥) | |
| 8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ On → Tr 𝑥) |
| 9 | vex 3448 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 10 | 9 | unisuc 6401 | . . . . 5 ⊢ (Tr 𝑥 ↔ ∪ suc 𝑥 = 𝑥) |
| 11 | 8, 10 | sylib 218 | . . . 4 ⊢ (𝑥 ∈ On → ∪ suc 𝑥 = 𝑥) |
| 12 | 5, 11 | vtoclga 3540 | . . 3 ⊢ (𝐴 ∈ On → ∪ suc 𝐴 = 𝐴) |
| 13 | sucon 7759 | . . . . . 6 ⊢ suc On = On | |
| 14 | 13 | unieqi 4879 | . . . . 5 ⊢ ∪ suc On = ∪ On |
| 15 | unon 7786 | . . . . 5 ⊢ ∪ On = On | |
| 16 | 14, 15 | eqtri 2752 | . . . 4 ⊢ ∪ suc On = On |
| 17 | suceq 6388 | . . . . 5 ⊢ (𝐴 = On → suc 𝐴 = suc On) | |
| 18 | 17 | unieqd 4880 | . . . 4 ⊢ (𝐴 = On → ∪ suc 𝐴 = ∪ suc On) |
| 19 | id 22 | . . . 4 ⊢ (𝐴 = On → 𝐴 = On) | |
| 20 | 16, 18, 19 | 3eqtr4a 2790 | . . 3 ⊢ (𝐴 = On → ∪ suc 𝐴 = 𝐴) |
| 21 | 12, 20 | jaoi 857 | . 2 ⊢ ((𝐴 ∈ On ∨ 𝐴 = On) → ∪ suc 𝐴 = 𝐴) |
| 22 | 1, 21 | sylbi 217 | 1 ⊢ (Ord 𝐴 → ∪ suc 𝐴 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∪ cuni 4867 Tr wtr 5209 Ord word 6319 Oncon0 6320 suc csuc 6322 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-tr 5210 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-ord 6323 df-on 6324 df-suc 6326 |
| This theorem is referenced by: orduniss2 7788 onsucuni2 7789 nlimsucg 7798 tz7.44-2 8352 rnttrcl 9651 ttrclselem2 9655 ttukeylem7 10444 tsksuc 10691 nnuni 35707 dfrdg2 35776 ontgsucval 36413 onsuctopon 36415 limsucncmpi 36426 finxpsuclem 37378 |
| Copyright terms: Public domain | W3C validator |