Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordunisuc | Structured version Visualization version GIF version |
Description: An ordinal class is equal to the union of its successor. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
ordunisuc | ⊢ (Ord 𝐴 → ∪ suc 𝐴 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordeleqon 7609 | . 2 ⊢ (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On)) | |
2 | suceq 6316 | . . . . . 6 ⊢ (𝑥 = 𝐴 → suc 𝑥 = suc 𝐴) | |
3 | 2 | unieqd 4850 | . . . . 5 ⊢ (𝑥 = 𝐴 → ∪ suc 𝑥 = ∪ suc 𝐴) |
4 | id 22 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
5 | 3, 4 | eqeq12d 2754 | . . . 4 ⊢ (𝑥 = 𝐴 → (∪ suc 𝑥 = 𝑥 ↔ ∪ suc 𝐴 = 𝐴)) |
6 | eloni 6261 | . . . . . 6 ⊢ (𝑥 ∈ On → Ord 𝑥) | |
7 | ordtr 6265 | . . . . . 6 ⊢ (Ord 𝑥 → Tr 𝑥) | |
8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ On → Tr 𝑥) |
9 | vex 3426 | . . . . . 6 ⊢ 𝑥 ∈ V | |
10 | 9 | unisuc 6327 | . . . . 5 ⊢ (Tr 𝑥 ↔ ∪ suc 𝑥 = 𝑥) |
11 | 8, 10 | sylib 217 | . . . 4 ⊢ (𝑥 ∈ On → ∪ suc 𝑥 = 𝑥) |
12 | 5, 11 | vtoclga 3503 | . . 3 ⊢ (𝐴 ∈ On → ∪ suc 𝐴 = 𝐴) |
13 | sucon 7630 | . . . . . 6 ⊢ suc On = On | |
14 | 13 | unieqi 4849 | . . . . 5 ⊢ ∪ suc On = ∪ On |
15 | unon 7653 | . . . . 5 ⊢ ∪ On = On | |
16 | 14, 15 | eqtri 2766 | . . . 4 ⊢ ∪ suc On = On |
17 | suceq 6316 | . . . . 5 ⊢ (𝐴 = On → suc 𝐴 = suc On) | |
18 | 17 | unieqd 4850 | . . . 4 ⊢ (𝐴 = On → ∪ suc 𝐴 = ∪ suc On) |
19 | id 22 | . . . 4 ⊢ (𝐴 = On → 𝐴 = On) | |
20 | 16, 18, 19 | 3eqtr4a 2805 | . . 3 ⊢ (𝐴 = On → ∪ suc 𝐴 = 𝐴) |
21 | 12, 20 | jaoi 853 | . 2 ⊢ ((𝐴 ∈ On ∨ 𝐴 = On) → ∪ suc 𝐴 = 𝐴) |
22 | 1, 21 | sylbi 216 | 1 ⊢ (Ord 𝐴 → ∪ suc 𝐴 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ∪ cuni 4836 Tr wtr 5187 Ord word 6250 Oncon0 6251 suc csuc 6253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 df-suc 6257 |
This theorem is referenced by: orduniss2 7655 onsucuni2 7656 nlimsucg 7664 tz7.44-2 8209 ttukeylem7 10202 tsksuc 10449 nnuni 33595 dfrdg2 33677 rnttrcl 33708 ttrclselem2 33712 ontgsucval 34548 onsuctopon 34550 limsucncmpi 34561 finxpsuclem 35495 |
Copyright terms: Public domain | W3C validator |