MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordunisuc Structured version   Visualization version   GIF version

Theorem ordunisuc 7600
Description: An ordinal class is equal to the union of its successor. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ordunisuc (Ord 𝐴 suc 𝐴 = 𝐴)

Proof of Theorem ordunisuc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ordeleqon 7555 . 2 (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On))
2 suceq 6267 . . . . . 6 (𝑥 = 𝐴 → suc 𝑥 = suc 𝐴)
32unieqd 4823 . . . . 5 (𝑥 = 𝐴 suc 𝑥 = suc 𝐴)
4 id 22 . . . . 5 (𝑥 = 𝐴𝑥 = 𝐴)
53, 4eqeq12d 2750 . . . 4 (𝑥 = 𝐴 → ( suc 𝑥 = 𝑥 suc 𝐴 = 𝐴))
6 eloni 6212 . . . . . 6 (𝑥 ∈ On → Ord 𝑥)
7 ordtr 6216 . . . . . 6 (Ord 𝑥 → Tr 𝑥)
86, 7syl 17 . . . . 5 (𝑥 ∈ On → Tr 𝑥)
9 vex 3405 . . . . . 6 𝑥 ∈ V
109unisuc 6278 . . . . 5 (Tr 𝑥 suc 𝑥 = 𝑥)
118, 10sylib 221 . . . 4 (𝑥 ∈ On → suc 𝑥 = 𝑥)
125, 11vtoclga 3482 . . 3 (𝐴 ∈ On → suc 𝐴 = 𝐴)
13 sucon 7576 . . . . . 6 suc On = On
1413unieqi 4822 . . . . 5 suc On = On
15 unon 7599 . . . . 5 On = On
1614, 15eqtri 2762 . . . 4 suc On = On
17 suceq 6267 . . . . 5 (𝐴 = On → suc 𝐴 = suc On)
1817unieqd 4823 . . . 4 (𝐴 = On → suc 𝐴 = suc On)
19 id 22 . . . 4 (𝐴 = On → 𝐴 = On)
2016, 18, 193eqtr4a 2800 . . 3 (𝐴 = On → suc 𝐴 = 𝐴)
2112, 20jaoi 857 . 2 ((𝐴 ∈ On ∨ 𝐴 = On) → suc 𝐴 = 𝐴)
221, 21sylbi 220 1 (Ord 𝐴 suc 𝐴 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1543  wcel 2110   cuni 4809  Tr wtr 5150  Ord word 6201  Oncon0 6202  suc csuc 6204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-11 2158  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pr 5311  ax-un 7512
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2713  df-cleq 2726  df-clel 2812  df-ne 2936  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3403  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-br 5044  df-opab 5106  df-tr 5151  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-ord 6205  df-on 6206  df-suc 6208
This theorem is referenced by:  orduniss2  7601  onsucuni2  7602  nlimsucg  7610  tz7.44-2  8132  ttukeylem7  10112  tsksuc  10359  dfrdg2  33459  ontgsucval  34315  onsuctopon  34317  limsucncmpi  34328  finxpsuclem  35262
  Copyright terms: Public domain W3C validator