Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvgrat Structured version   Visualization version   GIF version

Theorem dvgrat 40664
Description: Ratio test for divergence of a complex infinite series. See e.g. remark "if (abs‘((𝑎‘(𝑛 + 1)) / (𝑎𝑛))) ≥ 1 for all large n..." in https://en.wikipedia.org/wiki/Ratio_test#The_test. (Contributed by Steve Rodriguez, 28-Feb-2020.)
Hypotheses
Ref Expression
dvgrat.z 𝑍 = (ℤ𝑀)
dvgrat.w 𝑊 = (ℤ𝑁)
dvgrat.n (𝜑𝑁𝑍)
dvgrat.f (𝜑𝐹𝑉)
dvgrat.c ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
dvgrat.n0 ((𝜑𝑘𝑊) → (𝐹𝑘) ≠ 0)
dvgrat.le ((𝜑𝑘𝑊) → (abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1))))
Assertion
Ref Expression
dvgrat (𝜑 → seq𝑀( + , 𝐹) ∉ dom ⇝ )
Distinct variable groups:   𝜑,𝑘   𝑘,𝐹   𝑘,𝑁   𝑘,𝑊   𝑘,𝑀   𝑘,𝑉   𝑘,𝑍

Proof of Theorem dvgrat
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 dvgrat.n . . . . . . . . 9 (𝜑𝑁𝑍)
2 dvgrat.z . . . . . . . . 9 𝑍 = (ℤ𝑀)
31, 2eleqtrdi 2923 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ𝑀))
4 eluzelz 12254 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
53, 4syl 17 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
6 uzid 12259 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
7 dvgrat.w . . . . . . . 8 𝑊 = (ℤ𝑁)
86, 7eleqtrrdi 2924 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁𝑊)
95, 8syl 17 . . . . . 6 (𝜑𝑁𝑊)
10 simpr 487 . . . . . . . . 9 ((𝜑𝑘 = 𝑁) → 𝑘 = 𝑁)
1110eleq1d 2897 . . . . . . . 8 ((𝜑𝑘 = 𝑁) → (𝑘𝑊𝑁𝑊))
1210fveq2d 6674 . . . . . . . . . 10 ((𝜑𝑘 = 𝑁) → (𝐹𝑘) = (𝐹𝑁))
1312fveq2d 6674 . . . . . . . . 9 ((𝜑𝑘 = 𝑁) → (abs‘(𝐹𝑘)) = (abs‘(𝐹𝑁)))
1413breq2d 5078 . . . . . . . 8 ((𝜑𝑘 = 𝑁) → (0 < (abs‘(𝐹𝑘)) ↔ 0 < (abs‘(𝐹𝑁))))
1511, 14imbi12d 347 . . . . . . 7 ((𝜑𝑘 = 𝑁) → ((𝑘𝑊 → 0 < (abs‘(𝐹𝑘))) ↔ (𝑁𝑊 → 0 < (abs‘(𝐹𝑁)))))
16 dvgrat.n0 . . . . . . . . 9 ((𝜑𝑘𝑊) → (𝐹𝑘) ≠ 0)
177eleq2i 2904 . . . . . . . . . . . . 13 (𝑘𝑊𝑘 ∈ (ℤ𝑁))
182uztrn2 12263 . . . . . . . . . . . . 13 ((𝑁𝑍𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
1917, 18sylan2b 595 . . . . . . . . . . . 12 ((𝑁𝑍𝑘𝑊) → 𝑘𝑍)
201, 19sylan 582 . . . . . . . . . . 11 ((𝜑𝑘𝑊) → 𝑘𝑍)
21 dvgrat.c . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
2220, 21syldan 593 . . . . . . . . . 10 ((𝜑𝑘𝑊) → (𝐹𝑘) ∈ ℂ)
23 absgt0 14684 . . . . . . . . . 10 ((𝐹𝑘) ∈ ℂ → ((𝐹𝑘) ≠ 0 ↔ 0 < (abs‘(𝐹𝑘))))
2422, 23syl 17 . . . . . . . . 9 ((𝜑𝑘𝑊) → ((𝐹𝑘) ≠ 0 ↔ 0 < (abs‘(𝐹𝑘))))
2516, 24mpbid 234 . . . . . . . 8 ((𝜑𝑘𝑊) → 0 < (abs‘(𝐹𝑘)))
2625ex 415 . . . . . . 7 (𝜑 → (𝑘𝑊 → 0 < (abs‘(𝐹𝑘))))
271, 15, 26vtocld 3556 . . . . . 6 (𝜑 → (𝑁𝑊 → 0 < (abs‘(𝐹𝑁))))
289, 27mpd 15 . . . . 5 (𝜑 → 0 < (abs‘(𝐹𝑁)))
29 0red 10644 . . . . . 6 (𝜑 → 0 ∈ ℝ)
3010eleq1d 2897 . . . . . . . . . 10 ((𝜑𝑘 = 𝑁) → (𝑘𝑍𝑁𝑍))
3112eleq1d 2897 . . . . . . . . . 10 ((𝜑𝑘 = 𝑁) → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑁) ∈ ℂ))
3230, 31imbi12d 347 . . . . . . . . 9 ((𝜑𝑘 = 𝑁) → ((𝑘𝑍 → (𝐹𝑘) ∈ ℂ) ↔ (𝑁𝑍 → (𝐹𝑁) ∈ ℂ)))
3321ex 415 . . . . . . . . 9 (𝜑 → (𝑘𝑍 → (𝐹𝑘) ∈ ℂ))
341, 32, 33vtocld 3556 . . . . . . . 8 (𝜑 → (𝑁𝑍 → (𝐹𝑁) ∈ ℂ))
351, 34mpd 15 . . . . . . 7 (𝜑 → (𝐹𝑁) ∈ ℂ)
3635abscld 14796 . . . . . 6 (𝜑 → (abs‘(𝐹𝑁)) ∈ ℝ)
3729, 36ltnled 10787 . . . . 5 (𝜑 → (0 < (abs‘(𝐹𝑁)) ↔ ¬ (abs‘(𝐹𝑁)) ≤ 0))
3828, 37mpbid 234 . . . 4 (𝜑 → ¬ (abs‘(𝐹𝑁)) ≤ 0)
395adantr 483 . . . . 5 ((𝜑𝐹 ⇝ 0) → 𝑁 ∈ ℤ)
4036adantr 483 . . . . 5 ((𝜑𝐹 ⇝ 0) → (abs‘(𝐹𝑁)) ∈ ℝ)
41 simpr 487 . . . . . . 7 ((𝜑𝐹 ⇝ 0) → 𝐹 ⇝ 0)
427fvexi 6684 . . . . . . . . 9 𝑊 ∈ V
4342mptex 6986 . . . . . . . 8 (𝑖𝑊 ↦ (abs‘(𝐹𝑖))) ∈ V
4443a1i 11 . . . . . . 7 ((𝜑𝐹 ⇝ 0) → (𝑖𝑊 ↦ (abs‘(𝐹𝑖))) ∈ V)
4522adantlr 713 . . . . . . 7 (((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) → (𝐹𝑘) ∈ ℂ)
46 eqidd 2822 . . . . . . . 8 (((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) → (𝑖𝑊 ↦ (abs‘(𝐹𝑖))) = (𝑖𝑊 ↦ (abs‘(𝐹𝑖))))
47 simpr 487 . . . . . . . . . 10 ((((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) ∧ 𝑖 = 𝑘) → 𝑖 = 𝑘)
4847fveq2d 6674 . . . . . . . . 9 ((((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) ∧ 𝑖 = 𝑘) → (𝐹𝑖) = (𝐹𝑘))
4948fveq2d 6674 . . . . . . . 8 ((((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) ∧ 𝑖 = 𝑘) → (abs‘(𝐹𝑖)) = (abs‘(𝐹𝑘)))
50 simpr 487 . . . . . . . 8 (((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) → 𝑘𝑊)
51 fvex 6683 . . . . . . . . 9 (abs‘(𝐹𝑘)) ∈ V
5251a1i 11 . . . . . . . 8 (((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) → (abs‘(𝐹𝑘)) ∈ V)
5346, 49, 50, 52fvmptd 6775 . . . . . . 7 (((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) → ((𝑖𝑊 ↦ (abs‘(𝐹𝑖)))‘𝑘) = (abs‘(𝐹𝑘)))
547, 41, 44, 39, 45, 53climabs 14960 . . . . . 6 ((𝜑𝐹 ⇝ 0) → (𝑖𝑊 ↦ (abs‘(𝐹𝑖))) ⇝ (abs‘0))
55 abs0 14645 . . . . . 6 (abs‘0) = 0
5654, 55breqtrdi 5107 . . . . 5 ((𝜑𝐹 ⇝ 0) → (𝑖𝑊 ↦ (abs‘(𝐹𝑖))) ⇝ 0)
5745abscld 14796 . . . . . 6 (((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) → (abs‘(𝐹𝑘)) ∈ ℝ)
5853, 57eqeltrd 2913 . . . . 5 (((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) → ((𝑖𝑊 ↦ (abs‘(𝐹𝑖)))‘𝑘) ∈ ℝ)
59 2fveq3 6675 . . . . . . . . . . . 12 (𝑖 = 𝑁 → (abs‘(𝐹𝑖)) = (abs‘(𝐹𝑁)))
6059breq2d 5078 . . . . . . . . . . 11 (𝑖 = 𝑁 → ((abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑖)) ↔ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑁))))
6160imbi2d 343 . . . . . . . . . 10 (𝑖 = 𝑁 → ((𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑖))) ↔ (𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑁)))))
62 2fveq3 6675 . . . . . . . . . . . 12 (𝑖 = 𝑘 → (abs‘(𝐹𝑖)) = (abs‘(𝐹𝑘)))
6362breq2d 5078 . . . . . . . . . . 11 (𝑖 = 𝑘 → ((abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑖)) ↔ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))))
6463imbi2d 343 . . . . . . . . . 10 (𝑖 = 𝑘 → ((𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑖))) ↔ (𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘)))))
65 2fveq3 6675 . . . . . . . . . . . 12 (𝑖 = (𝑘 + 1) → (abs‘(𝐹𝑖)) = (abs‘(𝐹‘(𝑘 + 1))))
6665breq2d 5078 . . . . . . . . . . 11 (𝑖 = (𝑘 + 1) → ((abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑖)) ↔ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹‘(𝑘 + 1)))))
6766imbi2d 343 . . . . . . . . . 10 (𝑖 = (𝑘 + 1) → ((𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑖))) ↔ (𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹‘(𝑘 + 1))))))
6836adantr 483 . . . . . . . . . . . 12 ((𝜑𝑁 ∈ ℤ) → (abs‘(𝐹𝑁)) ∈ ℝ)
6968leidd 11206 . . . . . . . . . . 11 ((𝜑𝑁 ∈ ℤ) → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑁)))
7069expcom 416 . . . . . . . . . 10 (𝑁 ∈ ℤ → (𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑁))))
7136ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝑊) ∧ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))) → (abs‘(𝐹𝑁)) ∈ ℝ)
7222adantr 483 . . . . . . . . . . . . . . . 16 (((𝜑𝑘𝑊) ∧ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))) → (𝐹𝑘) ∈ ℂ)
7372abscld 14796 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝑊) ∧ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))) → (abs‘(𝐹𝑘)) ∈ ℝ)
747peano2uzs 12303 . . . . . . . . . . . . . . . . . 18 (𝑘𝑊 → (𝑘 + 1) ∈ 𝑊)
75 ovex 7189 . . . . . . . . . . . . . . . . . . 19 (𝑘 + 1) ∈ V
76 eleq1 2900 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = (𝑘 + 1) → (𝑖𝑊 ↔ (𝑘 + 1) ∈ 𝑊))
7776anbi2d 630 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = (𝑘 + 1) → ((𝜑𝑖𝑊) ↔ (𝜑 ∧ (𝑘 + 1) ∈ 𝑊)))
78 fveq2 6670 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = (𝑘 + 1) → (𝐹𝑖) = (𝐹‘(𝑘 + 1)))
7978eleq1d 2897 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = (𝑘 + 1) → ((𝐹𝑖) ∈ ℂ ↔ (𝐹‘(𝑘 + 1)) ∈ ℂ))
8077, 79imbi12d 347 . . . . . . . . . . . . . . . . . . 19 (𝑖 = (𝑘 + 1) → (((𝜑𝑖𝑊) → (𝐹𝑖) ∈ ℂ) ↔ ((𝜑 ∧ (𝑘 + 1) ∈ 𝑊) → (𝐹‘(𝑘 + 1)) ∈ ℂ)))
81 eleq1 2900 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑖 → (𝑘𝑊𝑖𝑊))
8281anbi2d 630 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑖 → ((𝜑𝑘𝑊) ↔ (𝜑𝑖𝑊)))
83 fveq2 6670 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑖 → (𝐹𝑘) = (𝐹𝑖))
8483eleq1d 2897 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑖 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑖) ∈ ℂ))
8582, 84imbi12d 347 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑖 → (((𝜑𝑘𝑊) → (𝐹𝑘) ∈ ℂ) ↔ ((𝜑𝑖𝑊) → (𝐹𝑖) ∈ ℂ)))
8685, 22chvarvv 2005 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖𝑊) → (𝐹𝑖) ∈ ℂ)
8775, 80, 86vtocl 3559 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 + 1) ∈ 𝑊) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
8874, 87sylan2 594 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑊) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
8988adantr 483 . . . . . . . . . . . . . . . 16 (((𝜑𝑘𝑊) ∧ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
9089abscld 14796 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝑊) ∧ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))) → (abs‘(𝐹‘(𝑘 + 1))) ∈ ℝ)
91 simpr 487 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝑊) ∧ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))) → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘)))
92 dvgrat.le . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑊) → (abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1))))
9392adantr 483 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝑊) ∧ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))) → (abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1))))
9471, 73, 90, 91, 93letrd 10797 . . . . . . . . . . . . . 14 (((𝜑𝑘𝑊) ∧ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))) → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹‘(𝑘 + 1))))
9594ex 415 . . . . . . . . . . . . 13 ((𝜑𝑘𝑊) → ((abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘)) → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹‘(𝑘 + 1)))))
9617, 95sylan2br 596 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘)) → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹‘(𝑘 + 1)))))
9796expcom 416 . . . . . . . . . . 11 (𝑘 ∈ (ℤ𝑁) → (𝜑 → ((abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘)) → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹‘(𝑘 + 1))))))
9897a2d 29 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑁) → ((𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))) → (𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹‘(𝑘 + 1))))))
9961, 64, 67, 64, 70, 98uzind4 12307 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑁) → (𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))))
10099impcom 410 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑁)) → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘)))
10117, 100sylan2b 595 . . . . . . 7 ((𝜑𝑘𝑊) → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘)))
102101adantlr 713 . . . . . 6 (((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘)))
103102, 53breqtrrd 5094 . . . . 5 (((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) → (abs‘(𝐹𝑁)) ≤ ((𝑖𝑊 ↦ (abs‘(𝐹𝑖)))‘𝑘))
1047, 39, 40, 56, 58, 103climlec2 15015 . . . 4 ((𝜑𝐹 ⇝ 0) → (abs‘(𝐹𝑁)) ≤ 0)
10538, 104mtand 814 . . 3 (𝜑 → ¬ 𝐹 ⇝ 0)
106 eluzel2 12249 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
1073, 106syl 17 . . . . 5 (𝜑𝑀 ∈ ℤ)
108107adantr 483 . . . 4 ((𝜑 ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → 𝑀 ∈ ℤ)
109 dvgrat.f . . . . 5 (𝜑𝐹𝑉)
110109adantr 483 . . . 4 ((𝜑 ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → 𝐹𝑉)
111 simpr 487 . . . 4 ((𝜑 ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
11221adantlr 713 . . . 4 (((𝜑 ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
1132, 108, 110, 111, 112serf0 15037 . . 3 ((𝜑 ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → 𝐹 ⇝ 0)
114105, 113mtand 814 . 2 (𝜑 → ¬ seq𝑀( + , 𝐹) ∈ dom ⇝ )
115 df-nel 3124 . 2 (seq𝑀( + , 𝐹) ∉ dom ⇝ ↔ ¬ seq𝑀( + , 𝐹) ∈ dom ⇝ )
116114, 115sylibr 236 1 (𝜑 → seq𝑀( + , 𝐹) ∉ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016  wnel 3123  Vcvv 3494   class class class wbr 5066  cmpt 5146  dom cdm 5555  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   < clt 10675  cle 10676  cz 11982  cuz 12244  seqcseq 13370  abscabs 14593  cli 14841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-ico 12745  df-fz 12894  df-fl 13163  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846
This theorem is referenced by:  cvgdvgrat  40665
  Copyright terms: Public domain W3C validator