Step | Hyp | Ref
| Expression |
1 | | dvgrat.n |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ 𝑍) |
2 | | dvgrat.z |
. . . . . . . . 9
⊢ 𝑍 =
(ℤ≥‘𝑀) |
3 | 1, 2 | eleqtrdi 2849 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
4 | | eluzelz 12592 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
5 | 3, 4 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℤ) |
6 | | uzid 12597 |
. . . . . . . 8
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
(ℤ≥‘𝑁)) |
7 | | dvgrat.w |
. . . . . . . 8
⊢ 𝑊 =
(ℤ≥‘𝑁) |
8 | 6, 7 | eleqtrrdi 2850 |
. . . . . . 7
⊢ (𝑁 ∈ ℤ → 𝑁 ∈ 𝑊) |
9 | 5, 8 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ 𝑊) |
10 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 = 𝑁) → 𝑘 = 𝑁) |
11 | 10 | eleq1d 2823 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 = 𝑁) → (𝑘 ∈ 𝑊 ↔ 𝑁 ∈ 𝑊)) |
12 | 10 | fveq2d 6778 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 = 𝑁) → (𝐹‘𝑘) = (𝐹‘𝑁)) |
13 | 12 | fveq2d 6778 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 = 𝑁) → (abs‘(𝐹‘𝑘)) = (abs‘(𝐹‘𝑁))) |
14 | 13 | breq2d 5086 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 = 𝑁) → (0 < (abs‘(𝐹‘𝑘)) ↔ 0 < (abs‘(𝐹‘𝑁)))) |
15 | 11, 14 | imbi12d 345 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 = 𝑁) → ((𝑘 ∈ 𝑊 → 0 < (abs‘(𝐹‘𝑘))) ↔ (𝑁 ∈ 𝑊 → 0 < (abs‘(𝐹‘𝑁))))) |
16 | | dvgrat.n0 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → (𝐹‘𝑘) ≠ 0) |
17 | 7 | eleq2i 2830 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ 𝑊 ↔ 𝑘 ∈ (ℤ≥‘𝑁)) |
18 | 2 | uztrn2 12601 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 𝑘 ∈ 𝑍) |
19 | 17, 18 | sylan2b 594 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ 𝑍 ∧ 𝑘 ∈ 𝑊) → 𝑘 ∈ 𝑍) |
20 | 1, 19 | sylan 580 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → 𝑘 ∈ 𝑍) |
21 | | dvgrat.c |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
22 | 20, 21 | syldan 591 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → (𝐹‘𝑘) ∈ ℂ) |
23 | | absgt0 15036 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑘) ∈ ℂ → ((𝐹‘𝑘) ≠ 0 ↔ 0 < (abs‘(𝐹‘𝑘)))) |
24 | 22, 23 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → ((𝐹‘𝑘) ≠ 0 ↔ 0 < (abs‘(𝐹‘𝑘)))) |
25 | 16, 24 | mpbid 231 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → 0 < (abs‘(𝐹‘𝑘))) |
26 | 25 | ex 413 |
. . . . . . 7
⊢ (𝜑 → (𝑘 ∈ 𝑊 → 0 < (abs‘(𝐹‘𝑘)))) |
27 | 1, 15, 26 | vtocld 3494 |
. . . . . 6
⊢ (𝜑 → (𝑁 ∈ 𝑊 → 0 < (abs‘(𝐹‘𝑁)))) |
28 | 9, 27 | mpd 15 |
. . . . 5
⊢ (𝜑 → 0 < (abs‘(𝐹‘𝑁))) |
29 | | 0red 10978 |
. . . . . 6
⊢ (𝜑 → 0 ∈
ℝ) |
30 | 10 | eleq1d 2823 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 = 𝑁) → (𝑘 ∈ 𝑍 ↔ 𝑁 ∈ 𝑍)) |
31 | 12 | eleq1d 2823 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 = 𝑁) → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑁) ∈ ℂ)) |
32 | 30, 31 | imbi12d 345 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 = 𝑁) → ((𝑘 ∈ 𝑍 → (𝐹‘𝑘) ∈ ℂ) ↔ (𝑁 ∈ 𝑍 → (𝐹‘𝑁) ∈ ℂ))) |
33 | 21 | ex 413 |
. . . . . . . . 9
⊢ (𝜑 → (𝑘 ∈ 𝑍 → (𝐹‘𝑘) ∈ ℂ)) |
34 | 1, 32, 33 | vtocld 3494 |
. . . . . . . 8
⊢ (𝜑 → (𝑁 ∈ 𝑍 → (𝐹‘𝑁) ∈ ℂ)) |
35 | 1, 34 | mpd 15 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘𝑁) ∈ ℂ) |
36 | 35 | abscld 15148 |
. . . . . 6
⊢ (𝜑 → (abs‘(𝐹‘𝑁)) ∈ ℝ) |
37 | 29, 36 | ltnled 11122 |
. . . . 5
⊢ (𝜑 → (0 < (abs‘(𝐹‘𝑁)) ↔ ¬ (abs‘(𝐹‘𝑁)) ≤ 0)) |
38 | 28, 37 | mpbid 231 |
. . . 4
⊢ (𝜑 → ¬ (abs‘(𝐹‘𝑁)) ≤ 0) |
39 | 5 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝐹 ⇝ 0) → 𝑁 ∈ ℤ) |
40 | 36 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝐹 ⇝ 0) → (abs‘(𝐹‘𝑁)) ∈ ℝ) |
41 | | simpr 485 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐹 ⇝ 0) → 𝐹 ⇝ 0) |
42 | 7 | fvexi 6788 |
. . . . . . . . 9
⊢ 𝑊 ∈ V |
43 | 42 | mptex 7099 |
. . . . . . . 8
⊢ (𝑖 ∈ 𝑊 ↦ (abs‘(𝐹‘𝑖))) ∈ V |
44 | 43 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐹 ⇝ 0) → (𝑖 ∈ 𝑊 ↦ (abs‘(𝐹‘𝑖))) ∈ V) |
45 | 22 | adantlr 712 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐹 ⇝ 0) ∧ 𝑘 ∈ 𝑊) → (𝐹‘𝑘) ∈ ℂ) |
46 | | eqidd 2739 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐹 ⇝ 0) ∧ 𝑘 ∈ 𝑊) → (𝑖 ∈ 𝑊 ↦ (abs‘(𝐹‘𝑖))) = (𝑖 ∈ 𝑊 ↦ (abs‘(𝐹‘𝑖)))) |
47 | | simpr 485 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐹 ⇝ 0) ∧ 𝑘 ∈ 𝑊) ∧ 𝑖 = 𝑘) → 𝑖 = 𝑘) |
48 | 47 | fveq2d 6778 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐹 ⇝ 0) ∧ 𝑘 ∈ 𝑊) ∧ 𝑖 = 𝑘) → (𝐹‘𝑖) = (𝐹‘𝑘)) |
49 | 48 | fveq2d 6778 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐹 ⇝ 0) ∧ 𝑘 ∈ 𝑊) ∧ 𝑖 = 𝑘) → (abs‘(𝐹‘𝑖)) = (abs‘(𝐹‘𝑘))) |
50 | | simpr 485 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐹 ⇝ 0) ∧ 𝑘 ∈ 𝑊) → 𝑘 ∈ 𝑊) |
51 | | fvex 6787 |
. . . . . . . . 9
⊢
(abs‘(𝐹‘𝑘)) ∈ V |
52 | 51 | a1i 11 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐹 ⇝ 0) ∧ 𝑘 ∈ 𝑊) → (abs‘(𝐹‘𝑘)) ∈ V) |
53 | 46, 49, 50, 52 | fvmptd 6882 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐹 ⇝ 0) ∧ 𝑘 ∈ 𝑊) → ((𝑖 ∈ 𝑊 ↦ (abs‘(𝐹‘𝑖)))‘𝑘) = (abs‘(𝐹‘𝑘))) |
54 | 7, 41, 44, 39, 45, 53 | climabs 15313 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐹 ⇝ 0) → (𝑖 ∈ 𝑊 ↦ (abs‘(𝐹‘𝑖))) ⇝ (abs‘0)) |
55 | | abs0 14997 |
. . . . . 6
⊢
(abs‘0) = 0 |
56 | 54, 55 | breqtrdi 5115 |
. . . . 5
⊢ ((𝜑 ∧ 𝐹 ⇝ 0) → (𝑖 ∈ 𝑊 ↦ (abs‘(𝐹‘𝑖))) ⇝ 0) |
57 | 45 | abscld 15148 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐹 ⇝ 0) ∧ 𝑘 ∈ 𝑊) → (abs‘(𝐹‘𝑘)) ∈ ℝ) |
58 | 53, 57 | eqeltrd 2839 |
. . . . 5
⊢ (((𝜑 ∧ 𝐹 ⇝ 0) ∧ 𝑘 ∈ 𝑊) → ((𝑖 ∈ 𝑊 ↦ (abs‘(𝐹‘𝑖)))‘𝑘) ∈ ℝ) |
59 | | 2fveq3 6779 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑁 → (abs‘(𝐹‘𝑖)) = (abs‘(𝐹‘𝑁))) |
60 | 59 | breq2d 5086 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑁 → ((abs‘(𝐹‘𝑁)) ≤ (abs‘(𝐹‘𝑖)) ↔ (abs‘(𝐹‘𝑁)) ≤ (abs‘(𝐹‘𝑁)))) |
61 | 60 | imbi2d 341 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑁 → ((𝜑 → (abs‘(𝐹‘𝑁)) ≤ (abs‘(𝐹‘𝑖))) ↔ (𝜑 → (abs‘(𝐹‘𝑁)) ≤ (abs‘(𝐹‘𝑁))))) |
62 | | 2fveq3 6779 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑘 → (abs‘(𝐹‘𝑖)) = (abs‘(𝐹‘𝑘))) |
63 | 62 | breq2d 5086 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑘 → ((abs‘(𝐹‘𝑁)) ≤ (abs‘(𝐹‘𝑖)) ↔ (abs‘(𝐹‘𝑁)) ≤ (abs‘(𝐹‘𝑘)))) |
64 | 63 | imbi2d 341 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑘 → ((𝜑 → (abs‘(𝐹‘𝑁)) ≤ (abs‘(𝐹‘𝑖))) ↔ (𝜑 → (abs‘(𝐹‘𝑁)) ≤ (abs‘(𝐹‘𝑘))))) |
65 | | 2fveq3 6779 |
. . . . . . . . . . . 12
⊢ (𝑖 = (𝑘 + 1) → (abs‘(𝐹‘𝑖)) = (abs‘(𝐹‘(𝑘 + 1)))) |
66 | 65 | breq2d 5086 |
. . . . . . . . . . 11
⊢ (𝑖 = (𝑘 + 1) → ((abs‘(𝐹‘𝑁)) ≤ (abs‘(𝐹‘𝑖)) ↔ (abs‘(𝐹‘𝑁)) ≤ (abs‘(𝐹‘(𝑘 + 1))))) |
67 | 66 | imbi2d 341 |
. . . . . . . . . 10
⊢ (𝑖 = (𝑘 + 1) → ((𝜑 → (abs‘(𝐹‘𝑁)) ≤ (abs‘(𝐹‘𝑖))) ↔ (𝜑 → (abs‘(𝐹‘𝑁)) ≤ (abs‘(𝐹‘(𝑘 + 1)))))) |
68 | 36 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑁 ∈ ℤ) → (abs‘(𝐹‘𝑁)) ∈ ℝ) |
69 | 68 | leidd 11541 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑁 ∈ ℤ) → (abs‘(𝐹‘𝑁)) ≤ (abs‘(𝐹‘𝑁))) |
70 | 69 | expcom 414 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℤ → (𝜑 → (abs‘(𝐹‘𝑁)) ≤ (abs‘(𝐹‘𝑁)))) |
71 | 36 | ad2antrr 723 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑊) ∧ (abs‘(𝐹‘𝑁)) ≤ (abs‘(𝐹‘𝑘))) → (abs‘(𝐹‘𝑁)) ∈ ℝ) |
72 | 22 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑊) ∧ (abs‘(𝐹‘𝑁)) ≤ (abs‘(𝐹‘𝑘))) → (𝐹‘𝑘) ∈ ℂ) |
73 | 72 | abscld 15148 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑊) ∧ (abs‘(𝐹‘𝑁)) ≤ (abs‘(𝐹‘𝑘))) → (abs‘(𝐹‘𝑘)) ∈ ℝ) |
74 | 7 | peano2uzs 12642 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ 𝑊 → (𝑘 + 1) ∈ 𝑊) |
75 | | ovex 7308 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 + 1) ∈ V |
76 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 = (𝑘 + 1) → (𝑖 ∈ 𝑊 ↔ (𝑘 + 1) ∈ 𝑊)) |
77 | 76 | anbi2d 629 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 = (𝑘 + 1) → ((𝜑 ∧ 𝑖 ∈ 𝑊) ↔ (𝜑 ∧ (𝑘 + 1) ∈ 𝑊))) |
78 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 = (𝑘 + 1) → (𝐹‘𝑖) = (𝐹‘(𝑘 + 1))) |
79 | 78 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 = (𝑘 + 1) → ((𝐹‘𝑖) ∈ ℂ ↔ (𝐹‘(𝑘 + 1)) ∈ ℂ)) |
80 | 77, 79 | imbi12d 345 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = (𝑘 + 1) → (((𝜑 ∧ 𝑖 ∈ 𝑊) → (𝐹‘𝑖) ∈ ℂ) ↔ ((𝜑 ∧ (𝑘 + 1) ∈ 𝑊) → (𝐹‘(𝑘 + 1)) ∈ ℂ))) |
81 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = 𝑖 → (𝑘 ∈ 𝑊 ↔ 𝑖 ∈ 𝑊)) |
82 | 81 | anbi2d 629 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 𝑖 → ((𝜑 ∧ 𝑘 ∈ 𝑊) ↔ (𝜑 ∧ 𝑖 ∈ 𝑊))) |
83 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = 𝑖 → (𝐹‘𝑘) = (𝐹‘𝑖)) |
84 | 83 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 𝑖 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑖) ∈ ℂ)) |
85 | 82, 84 | imbi12d 345 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑖 → (((𝜑 ∧ 𝑘 ∈ 𝑊) → (𝐹‘𝑘) ∈ ℂ) ↔ ((𝜑 ∧ 𝑖 ∈ 𝑊) → (𝐹‘𝑖) ∈ ℂ))) |
86 | 85, 22 | chvarvv 2002 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑊) → (𝐹‘𝑖) ∈ ℂ) |
87 | 75, 80, 86 | vtocl 3498 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑘 + 1) ∈ 𝑊) → (𝐹‘(𝑘 + 1)) ∈ ℂ) |
88 | 74, 87 | sylan2 593 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → (𝐹‘(𝑘 + 1)) ∈ ℂ) |
89 | 88 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑊) ∧ (abs‘(𝐹‘𝑁)) ≤ (abs‘(𝐹‘𝑘))) → (𝐹‘(𝑘 + 1)) ∈ ℂ) |
90 | 89 | abscld 15148 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑊) ∧ (abs‘(𝐹‘𝑁)) ≤ (abs‘(𝐹‘𝑘))) → (abs‘(𝐹‘(𝑘 + 1))) ∈ ℝ) |
91 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑊) ∧ (abs‘(𝐹‘𝑁)) ≤ (abs‘(𝐹‘𝑘))) → (abs‘(𝐹‘𝑁)) ≤ (abs‘(𝐹‘𝑘))) |
92 | | dvgrat.le |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → (abs‘(𝐹‘𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1)))) |
93 | 92 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑊) ∧ (abs‘(𝐹‘𝑁)) ≤ (abs‘(𝐹‘𝑘))) → (abs‘(𝐹‘𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1)))) |
94 | 71, 73, 90, 91, 93 | letrd 11132 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑊) ∧ (abs‘(𝐹‘𝑁)) ≤ (abs‘(𝐹‘𝑘))) → (abs‘(𝐹‘𝑁)) ≤ (abs‘(𝐹‘(𝑘 + 1)))) |
95 | 94 | ex 413 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → ((abs‘(𝐹‘𝑁)) ≤ (abs‘(𝐹‘𝑘)) → (abs‘(𝐹‘𝑁)) ≤ (abs‘(𝐹‘(𝑘 + 1))))) |
96 | 17, 95 | sylan2br 595 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → ((abs‘(𝐹‘𝑁)) ≤ (abs‘(𝐹‘𝑘)) → (abs‘(𝐹‘𝑁)) ≤ (abs‘(𝐹‘(𝑘 + 1))))) |
97 | 96 | expcom 414 |
. . . . . . . . . . 11
⊢ (𝑘 ∈
(ℤ≥‘𝑁) → (𝜑 → ((abs‘(𝐹‘𝑁)) ≤ (abs‘(𝐹‘𝑘)) → (abs‘(𝐹‘𝑁)) ≤ (abs‘(𝐹‘(𝑘 + 1)))))) |
98 | 97 | a2d 29 |
. . . . . . . . . 10
⊢ (𝑘 ∈
(ℤ≥‘𝑁) → ((𝜑 → (abs‘(𝐹‘𝑁)) ≤ (abs‘(𝐹‘𝑘))) → (𝜑 → (abs‘(𝐹‘𝑁)) ≤ (abs‘(𝐹‘(𝑘 + 1)))))) |
99 | 61, 64, 67, 64, 70, 98 | uzind4 12646 |
. . . . . . . . 9
⊢ (𝑘 ∈
(ℤ≥‘𝑁) → (𝜑 → (abs‘(𝐹‘𝑁)) ≤ (abs‘(𝐹‘𝑘)))) |
100 | 99 | impcom 408 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (abs‘(𝐹‘𝑁)) ≤ (abs‘(𝐹‘𝑘))) |
101 | 17, 100 | sylan2b 594 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → (abs‘(𝐹‘𝑁)) ≤ (abs‘(𝐹‘𝑘))) |
102 | 101 | adantlr 712 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐹 ⇝ 0) ∧ 𝑘 ∈ 𝑊) → (abs‘(𝐹‘𝑁)) ≤ (abs‘(𝐹‘𝑘))) |
103 | 102, 53 | breqtrrd 5102 |
. . . . 5
⊢ (((𝜑 ∧ 𝐹 ⇝ 0) ∧ 𝑘 ∈ 𝑊) → (abs‘(𝐹‘𝑁)) ≤ ((𝑖 ∈ 𝑊 ↦ (abs‘(𝐹‘𝑖)))‘𝑘)) |
104 | 7, 39, 40, 56, 58, 103 | climlec2 15370 |
. . . 4
⊢ ((𝜑 ∧ 𝐹 ⇝ 0) → (abs‘(𝐹‘𝑁)) ≤ 0) |
105 | 38, 104 | mtand 813 |
. . 3
⊢ (𝜑 → ¬ 𝐹 ⇝ 0) |
106 | | eluzel2 12587 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
107 | 3, 106 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℤ) |
108 | 107 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → 𝑀 ∈
ℤ) |
109 | | dvgrat.f |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ 𝑉) |
110 | 109 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → 𝐹 ∈ 𝑉) |
111 | | simpr 485 |
. . . 4
⊢ ((𝜑 ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
112 | 21 | adantlr 712 |
. . . 4
⊢ (((𝜑 ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
113 | 2, 108, 110, 111, 112 | serf0 15392 |
. . 3
⊢ ((𝜑 ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → 𝐹 ⇝ 0) |
114 | 105, 113 | mtand 813 |
. 2
⊢ (𝜑 → ¬ seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
115 | | df-nel 3050 |
. 2
⊢ (seq𝑀( + , 𝐹) ∉ dom ⇝ ↔ ¬ seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
116 | 114, 115 | sylibr 233 |
1
⊢ (𝜑 → seq𝑀( + , 𝐹) ∉ dom ⇝ ) |