Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvgrat Structured version   Visualization version   GIF version

Theorem dvgrat 39352
Description: Ratio test for divergence of a complex infinite series. See e.g. remark "if (abs‘((𝑎‘(𝑛 + 1)) / (𝑎𝑛))) ≥ 1 for all large n..." in https://en.wikipedia.org/wiki/Ratio_test#The_test. (Contributed by Steve Rodriguez, 28-Feb-2020.)
Hypotheses
Ref Expression
dvgrat.z 𝑍 = (ℤ𝑀)
dvgrat.w 𝑊 = (ℤ𝑁)
dvgrat.n (𝜑𝑁𝑍)
dvgrat.f (𝜑𝐹𝑉)
dvgrat.c ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
dvgrat.n0 ((𝜑𝑘𝑊) → (𝐹𝑘) ≠ 0)
dvgrat.le ((𝜑𝑘𝑊) → (abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1))))
Assertion
Ref Expression
dvgrat (𝜑 → seq𝑀( + , 𝐹) ∉ dom ⇝ )
Distinct variable groups:   𝜑,𝑘   𝑘,𝐹   𝑘,𝑁   𝑘,𝑊   𝑘,𝑀   𝑘,𝑉   𝑘,𝑍

Proof of Theorem dvgrat
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 dvgrat.n . . . . . . . . 9 (𝜑𝑁𝑍)
2 dvgrat.z . . . . . . . . 9 𝑍 = (ℤ𝑀)
31, 2syl6eleq 2917 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ𝑀))
4 eluzelz 11979 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
53, 4syl 17 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
6 uzid 11984 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
7 dvgrat.w . . . . . . . 8 𝑊 = (ℤ𝑁)
86, 7syl6eleqr 2918 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁𝑊)
95, 8syl 17 . . . . . 6 (𝜑𝑁𝑊)
10 simpr 479 . . . . . . . . 9 ((𝜑𝑘 = 𝑁) → 𝑘 = 𝑁)
1110eleq1d 2892 . . . . . . . 8 ((𝜑𝑘 = 𝑁) → (𝑘𝑊𝑁𝑊))
1210fveq2d 6438 . . . . . . . . . 10 ((𝜑𝑘 = 𝑁) → (𝐹𝑘) = (𝐹𝑁))
1312fveq2d 6438 . . . . . . . . 9 ((𝜑𝑘 = 𝑁) → (abs‘(𝐹𝑘)) = (abs‘(𝐹𝑁)))
1413breq2d 4886 . . . . . . . 8 ((𝜑𝑘 = 𝑁) → (0 < (abs‘(𝐹𝑘)) ↔ 0 < (abs‘(𝐹𝑁))))
1511, 14imbi12d 336 . . . . . . 7 ((𝜑𝑘 = 𝑁) → ((𝑘𝑊 → 0 < (abs‘(𝐹𝑘))) ↔ (𝑁𝑊 → 0 < (abs‘(𝐹𝑁)))))
16 dvgrat.n0 . . . . . . . . 9 ((𝜑𝑘𝑊) → (𝐹𝑘) ≠ 0)
177eleq2i 2899 . . . . . . . . . . . . 13 (𝑘𝑊𝑘 ∈ (ℤ𝑁))
182uztrn2 11987 . . . . . . . . . . . . 13 ((𝑁𝑍𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
1917, 18sylan2b 589 . . . . . . . . . . . 12 ((𝑁𝑍𝑘𝑊) → 𝑘𝑍)
201, 19sylan 577 . . . . . . . . . . 11 ((𝜑𝑘𝑊) → 𝑘𝑍)
21 dvgrat.c . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
2220, 21syldan 587 . . . . . . . . . 10 ((𝜑𝑘𝑊) → (𝐹𝑘) ∈ ℂ)
23 absgt0 14442 . . . . . . . . . 10 ((𝐹𝑘) ∈ ℂ → ((𝐹𝑘) ≠ 0 ↔ 0 < (abs‘(𝐹𝑘))))
2422, 23syl 17 . . . . . . . . 9 ((𝜑𝑘𝑊) → ((𝐹𝑘) ≠ 0 ↔ 0 < (abs‘(𝐹𝑘))))
2516, 24mpbid 224 . . . . . . . 8 ((𝜑𝑘𝑊) → 0 < (abs‘(𝐹𝑘)))
2625ex 403 . . . . . . 7 (𝜑 → (𝑘𝑊 → 0 < (abs‘(𝐹𝑘))))
271, 15, 26vtocld 3474 . . . . . 6 (𝜑 → (𝑁𝑊 → 0 < (abs‘(𝐹𝑁))))
289, 27mpd 15 . . . . 5 (𝜑 → 0 < (abs‘(𝐹𝑁)))
29 0red 10361 . . . . . 6 (𝜑 → 0 ∈ ℝ)
3010eleq1d 2892 . . . . . . . . . 10 ((𝜑𝑘 = 𝑁) → (𝑘𝑍𝑁𝑍))
3112eleq1d 2892 . . . . . . . . . 10 ((𝜑𝑘 = 𝑁) → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑁) ∈ ℂ))
3230, 31imbi12d 336 . . . . . . . . 9 ((𝜑𝑘 = 𝑁) → ((𝑘𝑍 → (𝐹𝑘) ∈ ℂ) ↔ (𝑁𝑍 → (𝐹𝑁) ∈ ℂ)))
3321ex 403 . . . . . . . . 9 (𝜑 → (𝑘𝑍 → (𝐹𝑘) ∈ ℂ))
341, 32, 33vtocld 3474 . . . . . . . 8 (𝜑 → (𝑁𝑍 → (𝐹𝑁) ∈ ℂ))
351, 34mpd 15 . . . . . . 7 (𝜑 → (𝐹𝑁) ∈ ℂ)
3635abscld 14553 . . . . . 6 (𝜑 → (abs‘(𝐹𝑁)) ∈ ℝ)
3729, 36ltnled 10504 . . . . 5 (𝜑 → (0 < (abs‘(𝐹𝑁)) ↔ ¬ (abs‘(𝐹𝑁)) ≤ 0))
3828, 37mpbid 224 . . . 4 (𝜑 → ¬ (abs‘(𝐹𝑁)) ≤ 0)
395adantr 474 . . . . 5 ((𝜑𝐹 ⇝ 0) → 𝑁 ∈ ℤ)
4036adantr 474 . . . . 5 ((𝜑𝐹 ⇝ 0) → (abs‘(𝐹𝑁)) ∈ ℝ)
41 simpr 479 . . . . . . 7 ((𝜑𝐹 ⇝ 0) → 𝐹 ⇝ 0)
427fvexi 6448 . . . . . . . . 9 𝑊 ∈ V
4342mptex 6743 . . . . . . . 8 (𝑖𝑊 ↦ (abs‘(𝐹𝑖))) ∈ V
4443a1i 11 . . . . . . 7 ((𝜑𝐹 ⇝ 0) → (𝑖𝑊 ↦ (abs‘(𝐹𝑖))) ∈ V)
4522adantlr 708 . . . . . . 7 (((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) → (𝐹𝑘) ∈ ℂ)
46 eqidd 2827 . . . . . . . 8 (((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) → (𝑖𝑊 ↦ (abs‘(𝐹𝑖))) = (𝑖𝑊 ↦ (abs‘(𝐹𝑖))))
47 simpr 479 . . . . . . . . . 10 ((((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) ∧ 𝑖 = 𝑘) → 𝑖 = 𝑘)
4847fveq2d 6438 . . . . . . . . 9 ((((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) ∧ 𝑖 = 𝑘) → (𝐹𝑖) = (𝐹𝑘))
4948fveq2d 6438 . . . . . . . 8 ((((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) ∧ 𝑖 = 𝑘) → (abs‘(𝐹𝑖)) = (abs‘(𝐹𝑘)))
50 simpr 479 . . . . . . . 8 (((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) → 𝑘𝑊)
51 fvex 6447 . . . . . . . . 9 (abs‘(𝐹𝑘)) ∈ V
5251a1i 11 . . . . . . . 8 (((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) → (abs‘(𝐹𝑘)) ∈ V)
5346, 49, 50, 52fvmptd 6536 . . . . . . 7 (((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) → ((𝑖𝑊 ↦ (abs‘(𝐹𝑖)))‘𝑘) = (abs‘(𝐹𝑘)))
547, 41, 44, 39, 45, 53climabs 14712 . . . . . 6 ((𝜑𝐹 ⇝ 0) → (𝑖𝑊 ↦ (abs‘(𝐹𝑖))) ⇝ (abs‘0))
55 abs0 14403 . . . . . 6 (abs‘0) = 0
5654, 55syl6breq 4915 . . . . 5 ((𝜑𝐹 ⇝ 0) → (𝑖𝑊 ↦ (abs‘(𝐹𝑖))) ⇝ 0)
5745abscld 14553 . . . . . 6 (((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) → (abs‘(𝐹𝑘)) ∈ ℝ)
5853, 57eqeltrd 2907 . . . . 5 (((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) → ((𝑖𝑊 ↦ (abs‘(𝐹𝑖)))‘𝑘) ∈ ℝ)
59 2fveq3 6439 . . . . . . . . . . . 12 (𝑖 = 𝑁 → (abs‘(𝐹𝑖)) = (abs‘(𝐹𝑁)))
6059breq2d 4886 . . . . . . . . . . 11 (𝑖 = 𝑁 → ((abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑖)) ↔ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑁))))
6160imbi2d 332 . . . . . . . . . 10 (𝑖 = 𝑁 → ((𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑖))) ↔ (𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑁)))))
62 2fveq3 6439 . . . . . . . . . . . 12 (𝑖 = 𝑘 → (abs‘(𝐹𝑖)) = (abs‘(𝐹𝑘)))
6362breq2d 4886 . . . . . . . . . . 11 (𝑖 = 𝑘 → ((abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑖)) ↔ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))))
6463imbi2d 332 . . . . . . . . . 10 (𝑖 = 𝑘 → ((𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑖))) ↔ (𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘)))))
65 2fveq3 6439 . . . . . . . . . . . 12 (𝑖 = (𝑘 + 1) → (abs‘(𝐹𝑖)) = (abs‘(𝐹‘(𝑘 + 1))))
6665breq2d 4886 . . . . . . . . . . 11 (𝑖 = (𝑘 + 1) → ((abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑖)) ↔ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹‘(𝑘 + 1)))))
6766imbi2d 332 . . . . . . . . . 10 (𝑖 = (𝑘 + 1) → ((𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑖))) ↔ (𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹‘(𝑘 + 1))))))
6836adantr 474 . . . . . . . . . . . 12 ((𝜑𝑁 ∈ ℤ) → (abs‘(𝐹𝑁)) ∈ ℝ)
6968leidd 10919 . . . . . . . . . . 11 ((𝜑𝑁 ∈ ℤ) → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑁)))
7069expcom 404 . . . . . . . . . 10 (𝑁 ∈ ℤ → (𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑁))))
7136ad2antrr 719 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝑊) ∧ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))) → (abs‘(𝐹𝑁)) ∈ ℝ)
7222adantr 474 . . . . . . . . . . . . . . . 16 (((𝜑𝑘𝑊) ∧ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))) → (𝐹𝑘) ∈ ℂ)
7372abscld 14553 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝑊) ∧ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))) → (abs‘(𝐹𝑘)) ∈ ℝ)
747peano2uzs 12025 . . . . . . . . . . . . . . . . . 18 (𝑘𝑊 → (𝑘 + 1) ∈ 𝑊)
75 ovex 6938 . . . . . . . . . . . . . . . . . . 19 (𝑘 + 1) ∈ V
76 eleq1 2895 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = (𝑘 + 1) → (𝑖𝑊 ↔ (𝑘 + 1) ∈ 𝑊))
7776anbi2d 624 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = (𝑘 + 1) → ((𝜑𝑖𝑊) ↔ (𝜑 ∧ (𝑘 + 1) ∈ 𝑊)))
78 fveq2 6434 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = (𝑘 + 1) → (𝐹𝑖) = (𝐹‘(𝑘 + 1)))
7978eleq1d 2892 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = (𝑘 + 1) → ((𝐹𝑖) ∈ ℂ ↔ (𝐹‘(𝑘 + 1)) ∈ ℂ))
8077, 79imbi12d 336 . . . . . . . . . . . . . . . . . . 19 (𝑖 = (𝑘 + 1) → (((𝜑𝑖𝑊) → (𝐹𝑖) ∈ ℂ) ↔ ((𝜑 ∧ (𝑘 + 1) ∈ 𝑊) → (𝐹‘(𝑘 + 1)) ∈ ℂ)))
81 eleq1 2895 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑖 → (𝑘𝑊𝑖𝑊))
8281anbi2d 624 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑖 → ((𝜑𝑘𝑊) ↔ (𝜑𝑖𝑊)))
83 fveq2 6434 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑖 → (𝐹𝑘) = (𝐹𝑖))
8483eleq1d 2892 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑖 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑖) ∈ ℂ))
8582, 84imbi12d 336 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑖 → (((𝜑𝑘𝑊) → (𝐹𝑘) ∈ ℂ) ↔ ((𝜑𝑖𝑊) → (𝐹𝑖) ∈ ℂ)))
8685, 22chvarv 2418 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖𝑊) → (𝐹𝑖) ∈ ℂ)
8775, 80, 86vtocl 3476 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 + 1) ∈ 𝑊) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
8874, 87sylan2 588 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑊) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
8988adantr 474 . . . . . . . . . . . . . . . 16 (((𝜑𝑘𝑊) ∧ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
9089abscld 14553 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝑊) ∧ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))) → (abs‘(𝐹‘(𝑘 + 1))) ∈ ℝ)
91 simpr 479 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝑊) ∧ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))) → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘)))
92 dvgrat.le . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑊) → (abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1))))
9392adantr 474 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝑊) ∧ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))) → (abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1))))
9471, 73, 90, 91, 93letrd 10514 . . . . . . . . . . . . . 14 (((𝜑𝑘𝑊) ∧ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))) → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹‘(𝑘 + 1))))
9594ex 403 . . . . . . . . . . . . 13 ((𝜑𝑘𝑊) → ((abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘)) → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹‘(𝑘 + 1)))))
9617, 95sylan2br 590 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘)) → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹‘(𝑘 + 1)))))
9796expcom 404 . . . . . . . . . . 11 (𝑘 ∈ (ℤ𝑁) → (𝜑 → ((abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘)) → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹‘(𝑘 + 1))))))
9897a2d 29 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑁) → ((𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))) → (𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹‘(𝑘 + 1))))))
9961, 64, 67, 64, 70, 98uzind4 12029 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑁) → (𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))))
10099impcom 398 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑁)) → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘)))
10117, 100sylan2b 589 . . . . . . 7 ((𝜑𝑘𝑊) → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘)))
102101adantlr 708 . . . . . 6 (((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘)))
103102, 53breqtrrd 4902 . . . . 5 (((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) → (abs‘(𝐹𝑁)) ≤ ((𝑖𝑊 ↦ (abs‘(𝐹𝑖)))‘𝑘))
1047, 39, 40, 56, 58, 103climlec2 14767 . . . 4 ((𝜑𝐹 ⇝ 0) → (abs‘(𝐹𝑁)) ≤ 0)
10538, 104mtand 852 . . 3 (𝜑 → ¬ 𝐹 ⇝ 0)
106 eluzel2 11974 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
1073, 106syl 17 . . . . 5 (𝜑𝑀 ∈ ℤ)
108107adantr 474 . . . 4 ((𝜑 ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → 𝑀 ∈ ℤ)
109 dvgrat.f . . . . 5 (𝜑𝐹𝑉)
110109adantr 474 . . . 4 ((𝜑 ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → 𝐹𝑉)
111 simpr 479 . . . 4 ((𝜑 ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
11221adantlr 708 . . . 4 (((𝜑 ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
1132, 108, 110, 111, 112serf0 14789 . . 3 ((𝜑 ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → 𝐹 ⇝ 0)
114105, 113mtand 852 . 2 (𝜑 → ¬ seq𝑀( + , 𝐹) ∈ dom ⇝ )
115 df-nel 3104 . 2 (seq𝑀( + , 𝐹) ∉ dom ⇝ ↔ ¬ seq𝑀( + , 𝐹) ∈ dom ⇝ )
116114, 115sylibr 226 1 (𝜑 → seq𝑀( + , 𝐹) ∉ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386   = wceq 1658  wcel 2166  wne 3000  wnel 3103  Vcvv 3415   class class class wbr 4874  cmpt 4953  dom cdm 5343  cfv 6124  (class class class)co 6906  cc 10251  cr 10252  0cc0 10253  1c1 10254   + caddc 10256   < clt 10392  cle 10393  cz 11705  cuz 11969  seqcseq 13096  abscabs 14352  cli 14593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330  ax-pre-sup 10331  ax-addf 10332  ax-mulf 10333
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rmo 3126  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-om 7328  df-1st 7429  df-2nd 7430  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-er 8010  df-pm 8126  df-en 8224  df-dom 8225  df-sdom 8226  df-sup 8618  df-inf 8619  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-div 11011  df-nn 11352  df-2 11415  df-3 11416  df-n0 11620  df-z 11706  df-uz 11970  df-rp 12114  df-ico 12470  df-fz 12621  df-fl 12889  df-seq 13097  df-exp 13156  df-cj 14217  df-re 14218  df-im 14219  df-sqrt 14353  df-abs 14354  df-limsup 14580  df-clim 14597  df-rlim 14598
This theorem is referenced by:  cvgdvgrat  39353
  Copyright terms: Public domain W3C validator