Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvgrat Structured version   Visualization version   GIF version

Theorem dvgrat 40873
Description: Ratio test for divergence of a complex infinite series. See e.g. remark "if (abs‘((𝑎‘(𝑛 + 1)) / (𝑎𝑛))) ≥ 1 for all large n..." in https://en.wikipedia.org/wiki/Ratio_test#The_test. (Contributed by Steve Rodriguez, 28-Feb-2020.)
Hypotheses
Ref Expression
dvgrat.z 𝑍 = (ℤ𝑀)
dvgrat.w 𝑊 = (ℤ𝑁)
dvgrat.n (𝜑𝑁𝑍)
dvgrat.f (𝜑𝐹𝑉)
dvgrat.c ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
dvgrat.n0 ((𝜑𝑘𝑊) → (𝐹𝑘) ≠ 0)
dvgrat.le ((𝜑𝑘𝑊) → (abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1))))
Assertion
Ref Expression
dvgrat (𝜑 → seq𝑀( + , 𝐹) ∉ dom ⇝ )
Distinct variable groups:   𝜑,𝑘   𝑘,𝐹   𝑘,𝑁   𝑘,𝑊   𝑘,𝑀   𝑘,𝑉   𝑘,𝑍

Proof of Theorem dvgrat
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 dvgrat.n . . . . . . . . 9 (𝜑𝑁𝑍)
2 dvgrat.z . . . . . . . . 9 𝑍 = (ℤ𝑀)
31, 2eleqtrdi 2926 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ𝑀))
4 eluzelz 12246 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
53, 4syl 17 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
6 uzid 12251 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
7 dvgrat.w . . . . . . . 8 𝑊 = (ℤ𝑁)
86, 7eleqtrrdi 2927 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁𝑊)
95, 8syl 17 . . . . . 6 (𝜑𝑁𝑊)
10 simpr 488 . . . . . . . . 9 ((𝜑𝑘 = 𝑁) → 𝑘 = 𝑁)
1110eleq1d 2900 . . . . . . . 8 ((𝜑𝑘 = 𝑁) → (𝑘𝑊𝑁𝑊))
1210fveq2d 6662 . . . . . . . . . 10 ((𝜑𝑘 = 𝑁) → (𝐹𝑘) = (𝐹𝑁))
1312fveq2d 6662 . . . . . . . . 9 ((𝜑𝑘 = 𝑁) → (abs‘(𝐹𝑘)) = (abs‘(𝐹𝑁)))
1413breq2d 5064 . . . . . . . 8 ((𝜑𝑘 = 𝑁) → (0 < (abs‘(𝐹𝑘)) ↔ 0 < (abs‘(𝐹𝑁))))
1511, 14imbi12d 348 . . . . . . 7 ((𝜑𝑘 = 𝑁) → ((𝑘𝑊 → 0 < (abs‘(𝐹𝑘))) ↔ (𝑁𝑊 → 0 < (abs‘(𝐹𝑁)))))
16 dvgrat.n0 . . . . . . . . 9 ((𝜑𝑘𝑊) → (𝐹𝑘) ≠ 0)
177eleq2i 2907 . . . . . . . . . . . . 13 (𝑘𝑊𝑘 ∈ (ℤ𝑁))
182uztrn2 12255 . . . . . . . . . . . . 13 ((𝑁𝑍𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
1917, 18sylan2b 596 . . . . . . . . . . . 12 ((𝑁𝑍𝑘𝑊) → 𝑘𝑍)
201, 19sylan 583 . . . . . . . . . . 11 ((𝜑𝑘𝑊) → 𝑘𝑍)
21 dvgrat.c . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
2220, 21syldan 594 . . . . . . . . . 10 ((𝜑𝑘𝑊) → (𝐹𝑘) ∈ ℂ)
23 absgt0 14680 . . . . . . . . . 10 ((𝐹𝑘) ∈ ℂ → ((𝐹𝑘) ≠ 0 ↔ 0 < (abs‘(𝐹𝑘))))
2422, 23syl 17 . . . . . . . . 9 ((𝜑𝑘𝑊) → ((𝐹𝑘) ≠ 0 ↔ 0 < (abs‘(𝐹𝑘))))
2516, 24mpbid 235 . . . . . . . 8 ((𝜑𝑘𝑊) → 0 < (abs‘(𝐹𝑘)))
2625ex 416 . . . . . . 7 (𝜑 → (𝑘𝑊 → 0 < (abs‘(𝐹𝑘))))
271, 15, 26vtocld 3542 . . . . . 6 (𝜑 → (𝑁𝑊 → 0 < (abs‘(𝐹𝑁))))
289, 27mpd 15 . . . . 5 (𝜑 → 0 < (abs‘(𝐹𝑁)))
29 0red 10636 . . . . . 6 (𝜑 → 0 ∈ ℝ)
3010eleq1d 2900 . . . . . . . . . 10 ((𝜑𝑘 = 𝑁) → (𝑘𝑍𝑁𝑍))
3112eleq1d 2900 . . . . . . . . . 10 ((𝜑𝑘 = 𝑁) → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑁) ∈ ℂ))
3230, 31imbi12d 348 . . . . . . . . 9 ((𝜑𝑘 = 𝑁) → ((𝑘𝑍 → (𝐹𝑘) ∈ ℂ) ↔ (𝑁𝑍 → (𝐹𝑁) ∈ ℂ)))
3321ex 416 . . . . . . . . 9 (𝜑 → (𝑘𝑍 → (𝐹𝑘) ∈ ℂ))
341, 32, 33vtocld 3542 . . . . . . . 8 (𝜑 → (𝑁𝑍 → (𝐹𝑁) ∈ ℂ))
351, 34mpd 15 . . . . . . 7 (𝜑 → (𝐹𝑁) ∈ ℂ)
3635abscld 14792 . . . . . 6 (𝜑 → (abs‘(𝐹𝑁)) ∈ ℝ)
3729, 36ltnled 10779 . . . . 5 (𝜑 → (0 < (abs‘(𝐹𝑁)) ↔ ¬ (abs‘(𝐹𝑁)) ≤ 0))
3828, 37mpbid 235 . . . 4 (𝜑 → ¬ (abs‘(𝐹𝑁)) ≤ 0)
395adantr 484 . . . . 5 ((𝜑𝐹 ⇝ 0) → 𝑁 ∈ ℤ)
4036adantr 484 . . . . 5 ((𝜑𝐹 ⇝ 0) → (abs‘(𝐹𝑁)) ∈ ℝ)
41 simpr 488 . . . . . . 7 ((𝜑𝐹 ⇝ 0) → 𝐹 ⇝ 0)
427fvexi 6672 . . . . . . . . 9 𝑊 ∈ V
4342mptex 6974 . . . . . . . 8 (𝑖𝑊 ↦ (abs‘(𝐹𝑖))) ∈ V
4443a1i 11 . . . . . . 7 ((𝜑𝐹 ⇝ 0) → (𝑖𝑊 ↦ (abs‘(𝐹𝑖))) ∈ V)
4522adantlr 714 . . . . . . 7 (((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) → (𝐹𝑘) ∈ ℂ)
46 eqidd 2825 . . . . . . . 8 (((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) → (𝑖𝑊 ↦ (abs‘(𝐹𝑖))) = (𝑖𝑊 ↦ (abs‘(𝐹𝑖))))
47 simpr 488 . . . . . . . . . 10 ((((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) ∧ 𝑖 = 𝑘) → 𝑖 = 𝑘)
4847fveq2d 6662 . . . . . . . . 9 ((((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) ∧ 𝑖 = 𝑘) → (𝐹𝑖) = (𝐹𝑘))
4948fveq2d 6662 . . . . . . . 8 ((((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) ∧ 𝑖 = 𝑘) → (abs‘(𝐹𝑖)) = (abs‘(𝐹𝑘)))
50 simpr 488 . . . . . . . 8 (((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) → 𝑘𝑊)
51 fvex 6671 . . . . . . . . 9 (abs‘(𝐹𝑘)) ∈ V
5251a1i 11 . . . . . . . 8 (((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) → (abs‘(𝐹𝑘)) ∈ V)
5346, 49, 50, 52fvmptd 6763 . . . . . . 7 (((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) → ((𝑖𝑊 ↦ (abs‘(𝐹𝑖)))‘𝑘) = (abs‘(𝐹𝑘)))
547, 41, 44, 39, 45, 53climabs 14956 . . . . . 6 ((𝜑𝐹 ⇝ 0) → (𝑖𝑊 ↦ (abs‘(𝐹𝑖))) ⇝ (abs‘0))
55 abs0 14641 . . . . . 6 (abs‘0) = 0
5654, 55breqtrdi 5093 . . . . 5 ((𝜑𝐹 ⇝ 0) → (𝑖𝑊 ↦ (abs‘(𝐹𝑖))) ⇝ 0)
5745abscld 14792 . . . . . 6 (((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) → (abs‘(𝐹𝑘)) ∈ ℝ)
5853, 57eqeltrd 2916 . . . . 5 (((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) → ((𝑖𝑊 ↦ (abs‘(𝐹𝑖)))‘𝑘) ∈ ℝ)
59 2fveq3 6663 . . . . . . . . . . . 12 (𝑖 = 𝑁 → (abs‘(𝐹𝑖)) = (abs‘(𝐹𝑁)))
6059breq2d 5064 . . . . . . . . . . 11 (𝑖 = 𝑁 → ((abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑖)) ↔ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑁))))
6160imbi2d 344 . . . . . . . . . 10 (𝑖 = 𝑁 → ((𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑖))) ↔ (𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑁)))))
62 2fveq3 6663 . . . . . . . . . . . 12 (𝑖 = 𝑘 → (abs‘(𝐹𝑖)) = (abs‘(𝐹𝑘)))
6362breq2d 5064 . . . . . . . . . . 11 (𝑖 = 𝑘 → ((abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑖)) ↔ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))))
6463imbi2d 344 . . . . . . . . . 10 (𝑖 = 𝑘 → ((𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑖))) ↔ (𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘)))))
65 2fveq3 6663 . . . . . . . . . . . 12 (𝑖 = (𝑘 + 1) → (abs‘(𝐹𝑖)) = (abs‘(𝐹‘(𝑘 + 1))))
6665breq2d 5064 . . . . . . . . . . 11 (𝑖 = (𝑘 + 1) → ((abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑖)) ↔ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹‘(𝑘 + 1)))))
6766imbi2d 344 . . . . . . . . . 10 (𝑖 = (𝑘 + 1) → ((𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑖))) ↔ (𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹‘(𝑘 + 1))))))
6836adantr 484 . . . . . . . . . . . 12 ((𝜑𝑁 ∈ ℤ) → (abs‘(𝐹𝑁)) ∈ ℝ)
6968leidd 11198 . . . . . . . . . . 11 ((𝜑𝑁 ∈ ℤ) → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑁)))
7069expcom 417 . . . . . . . . . 10 (𝑁 ∈ ℤ → (𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑁))))
7136ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝑊) ∧ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))) → (abs‘(𝐹𝑁)) ∈ ℝ)
7222adantr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑘𝑊) ∧ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))) → (𝐹𝑘) ∈ ℂ)
7372abscld 14792 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝑊) ∧ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))) → (abs‘(𝐹𝑘)) ∈ ℝ)
747peano2uzs 12295 . . . . . . . . . . . . . . . . . 18 (𝑘𝑊 → (𝑘 + 1) ∈ 𝑊)
75 ovex 7178 . . . . . . . . . . . . . . . . . . 19 (𝑘 + 1) ∈ V
76 eleq1 2903 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = (𝑘 + 1) → (𝑖𝑊 ↔ (𝑘 + 1) ∈ 𝑊))
7776anbi2d 631 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = (𝑘 + 1) → ((𝜑𝑖𝑊) ↔ (𝜑 ∧ (𝑘 + 1) ∈ 𝑊)))
78 fveq2 6658 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = (𝑘 + 1) → (𝐹𝑖) = (𝐹‘(𝑘 + 1)))
7978eleq1d 2900 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = (𝑘 + 1) → ((𝐹𝑖) ∈ ℂ ↔ (𝐹‘(𝑘 + 1)) ∈ ℂ))
8077, 79imbi12d 348 . . . . . . . . . . . . . . . . . . 19 (𝑖 = (𝑘 + 1) → (((𝜑𝑖𝑊) → (𝐹𝑖) ∈ ℂ) ↔ ((𝜑 ∧ (𝑘 + 1) ∈ 𝑊) → (𝐹‘(𝑘 + 1)) ∈ ℂ)))
81 eleq1 2903 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑖 → (𝑘𝑊𝑖𝑊))
8281anbi2d 631 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑖 → ((𝜑𝑘𝑊) ↔ (𝜑𝑖𝑊)))
83 fveq2 6658 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑖 → (𝐹𝑘) = (𝐹𝑖))
8483eleq1d 2900 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑖 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑖) ∈ ℂ))
8582, 84imbi12d 348 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑖 → (((𝜑𝑘𝑊) → (𝐹𝑘) ∈ ℂ) ↔ ((𝜑𝑖𝑊) → (𝐹𝑖) ∈ ℂ)))
8685, 22chvarvv 2006 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖𝑊) → (𝐹𝑖) ∈ ℂ)
8775, 80, 86vtocl 3545 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 + 1) ∈ 𝑊) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
8874, 87sylan2 595 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑊) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
8988adantr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑘𝑊) ∧ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
9089abscld 14792 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝑊) ∧ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))) → (abs‘(𝐹‘(𝑘 + 1))) ∈ ℝ)
91 simpr 488 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝑊) ∧ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))) → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘)))
92 dvgrat.le . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑊) → (abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1))))
9392adantr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝑊) ∧ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))) → (abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1))))
9471, 73, 90, 91, 93letrd 10789 . . . . . . . . . . . . . 14 (((𝜑𝑘𝑊) ∧ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))) → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹‘(𝑘 + 1))))
9594ex 416 . . . . . . . . . . . . 13 ((𝜑𝑘𝑊) → ((abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘)) → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹‘(𝑘 + 1)))))
9617, 95sylan2br 597 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘)) → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹‘(𝑘 + 1)))))
9796expcom 417 . . . . . . . . . . 11 (𝑘 ∈ (ℤ𝑁) → (𝜑 → ((abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘)) → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹‘(𝑘 + 1))))))
9897a2d 29 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑁) → ((𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))) → (𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹‘(𝑘 + 1))))))
9961, 64, 67, 64, 70, 98uzind4 12299 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑁) → (𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))))
10099impcom 411 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑁)) → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘)))
10117, 100sylan2b 596 . . . . . . 7 ((𝜑𝑘𝑊) → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘)))
102101adantlr 714 . . . . . 6 (((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘)))
103102, 53breqtrrd 5080 . . . . 5 (((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) → (abs‘(𝐹𝑁)) ≤ ((𝑖𝑊 ↦ (abs‘(𝐹𝑖)))‘𝑘))
1047, 39, 40, 56, 58, 103climlec2 15011 . . . 4 ((𝜑𝐹 ⇝ 0) → (abs‘(𝐹𝑁)) ≤ 0)
10538, 104mtand 815 . . 3 (𝜑 → ¬ 𝐹 ⇝ 0)
106 eluzel2 12241 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
1073, 106syl 17 . . . . 5 (𝜑𝑀 ∈ ℤ)
108107adantr 484 . . . 4 ((𝜑 ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → 𝑀 ∈ ℤ)
109 dvgrat.f . . . . 5 (𝜑𝐹𝑉)
110109adantr 484 . . . 4 ((𝜑 ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → 𝐹𝑉)
111 simpr 488 . . . 4 ((𝜑 ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
11221adantlr 714 . . . 4 (((𝜑 ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
1132, 108, 110, 111, 112serf0 15033 . . 3 ((𝜑 ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → 𝐹 ⇝ 0)
114105, 113mtand 815 . 2 (𝜑 → ¬ seq𝑀( + , 𝐹) ∈ dom ⇝ )
115 df-nel 3119 . 2 (seq𝑀( + , 𝐹) ∉ dom ⇝ ↔ ¬ seq𝑀( + , 𝐹) ∈ dom ⇝ )
116114, 115sylibr 237 1 (𝜑 → seq𝑀( + , 𝐹) ∉ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wne 3014  wnel 3118  Vcvv 3480   class class class wbr 5052  cmpt 5132  dom cdm 5542  cfv 6343  (class class class)co 7145  cc 10527  cr 10528  0cc0 10529  1c1 10530   + caddc 10532   < clt 10667  cle 10668  cz 11974  cuz 12236  seqcseq 13369  abscabs 14589  cli 14837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-tp 4554  df-op 4556  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7571  df-1st 7679  df-2nd 7680  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-er 8279  df-pm 8399  df-en 8500  df-dom 8501  df-sdom 8502  df-sup 8897  df-inf 8898  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11693  df-3 11694  df-n0 11891  df-z 11975  df-uz 12237  df-rp 12383  df-ico 12737  df-fz 12891  df-fl 13162  df-seq 13370  df-exp 13431  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-limsup 14824  df-clim 14841  df-rlim 14842
This theorem is referenced by:  cvgdvgrat  40874
  Copyright terms: Public domain W3C validator