Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvgrat Structured version   Visualization version   GIF version

Theorem dvgrat 44289
Description: Ratio test for divergence of a complex infinite series. See e.g. remark "if (abs‘((𝑎‘(𝑛 + 1)) / (𝑎𝑛))) ≥ 1 for all large n..." in https://en.wikipedia.org/wiki/Ratio_test#The_test. (Contributed by Steve Rodriguez, 28-Feb-2020.)
Hypotheses
Ref Expression
dvgrat.z 𝑍 = (ℤ𝑀)
dvgrat.w 𝑊 = (ℤ𝑁)
dvgrat.n (𝜑𝑁𝑍)
dvgrat.f (𝜑𝐹𝑉)
dvgrat.c ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
dvgrat.n0 ((𝜑𝑘𝑊) → (𝐹𝑘) ≠ 0)
dvgrat.le ((𝜑𝑘𝑊) → (abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1))))
Assertion
Ref Expression
dvgrat (𝜑 → seq𝑀( + , 𝐹) ∉ dom ⇝ )
Distinct variable groups:   𝜑,𝑘   𝑘,𝐹   𝑘,𝑁   𝑘,𝑊   𝑘,𝑀   𝑘,𝑉   𝑘,𝑍

Proof of Theorem dvgrat
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 dvgrat.n . . . . . . . . 9 (𝜑𝑁𝑍)
2 dvgrat.z . . . . . . . . 9 𝑍 = (ℤ𝑀)
31, 2eleqtrdi 2838 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ𝑀))
4 eluzelz 12745 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
53, 4syl 17 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
6 uzid 12750 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
7 dvgrat.w . . . . . . . 8 𝑊 = (ℤ𝑁)
86, 7eleqtrrdi 2839 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁𝑊)
95, 8syl 17 . . . . . 6 (𝜑𝑁𝑊)
10 simpr 484 . . . . . . . . 9 ((𝜑𝑘 = 𝑁) → 𝑘 = 𝑁)
1110eleq1d 2813 . . . . . . . 8 ((𝜑𝑘 = 𝑁) → (𝑘𝑊𝑁𝑊))
1210fveq2d 6826 . . . . . . . . . 10 ((𝜑𝑘 = 𝑁) → (𝐹𝑘) = (𝐹𝑁))
1312fveq2d 6826 . . . . . . . . 9 ((𝜑𝑘 = 𝑁) → (abs‘(𝐹𝑘)) = (abs‘(𝐹𝑁)))
1413breq2d 5104 . . . . . . . 8 ((𝜑𝑘 = 𝑁) → (0 < (abs‘(𝐹𝑘)) ↔ 0 < (abs‘(𝐹𝑁))))
1511, 14imbi12d 344 . . . . . . 7 ((𝜑𝑘 = 𝑁) → ((𝑘𝑊 → 0 < (abs‘(𝐹𝑘))) ↔ (𝑁𝑊 → 0 < (abs‘(𝐹𝑁)))))
16 dvgrat.n0 . . . . . . . . 9 ((𝜑𝑘𝑊) → (𝐹𝑘) ≠ 0)
177eleq2i 2820 . . . . . . . . . . . . 13 (𝑘𝑊𝑘 ∈ (ℤ𝑁))
182uztrn2 12754 . . . . . . . . . . . . 13 ((𝑁𝑍𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
1917, 18sylan2b 594 . . . . . . . . . . . 12 ((𝑁𝑍𝑘𝑊) → 𝑘𝑍)
201, 19sylan 580 . . . . . . . . . . 11 ((𝜑𝑘𝑊) → 𝑘𝑍)
21 dvgrat.c . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
2220, 21syldan 591 . . . . . . . . . 10 ((𝜑𝑘𝑊) → (𝐹𝑘) ∈ ℂ)
23 absgt0 15232 . . . . . . . . . 10 ((𝐹𝑘) ∈ ℂ → ((𝐹𝑘) ≠ 0 ↔ 0 < (abs‘(𝐹𝑘))))
2422, 23syl 17 . . . . . . . . 9 ((𝜑𝑘𝑊) → ((𝐹𝑘) ≠ 0 ↔ 0 < (abs‘(𝐹𝑘))))
2516, 24mpbid 232 . . . . . . . 8 ((𝜑𝑘𝑊) → 0 < (abs‘(𝐹𝑘)))
2625ex 412 . . . . . . 7 (𝜑 → (𝑘𝑊 → 0 < (abs‘(𝐹𝑘))))
271, 15, 26vtocld 3516 . . . . . 6 (𝜑 → (𝑁𝑊 → 0 < (abs‘(𝐹𝑁))))
289, 27mpd 15 . . . . 5 (𝜑 → 0 < (abs‘(𝐹𝑁)))
29 0red 11118 . . . . . 6 (𝜑 → 0 ∈ ℝ)
3010eleq1d 2813 . . . . . . . . . 10 ((𝜑𝑘 = 𝑁) → (𝑘𝑍𝑁𝑍))
3112eleq1d 2813 . . . . . . . . . 10 ((𝜑𝑘 = 𝑁) → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑁) ∈ ℂ))
3230, 31imbi12d 344 . . . . . . . . 9 ((𝜑𝑘 = 𝑁) → ((𝑘𝑍 → (𝐹𝑘) ∈ ℂ) ↔ (𝑁𝑍 → (𝐹𝑁) ∈ ℂ)))
3321ex 412 . . . . . . . . 9 (𝜑 → (𝑘𝑍 → (𝐹𝑘) ∈ ℂ))
341, 32, 33vtocld 3516 . . . . . . . 8 (𝜑 → (𝑁𝑍 → (𝐹𝑁) ∈ ℂ))
351, 34mpd 15 . . . . . . 7 (𝜑 → (𝐹𝑁) ∈ ℂ)
3635abscld 15346 . . . . . 6 (𝜑 → (abs‘(𝐹𝑁)) ∈ ℝ)
3729, 36ltnled 11263 . . . . 5 (𝜑 → (0 < (abs‘(𝐹𝑁)) ↔ ¬ (abs‘(𝐹𝑁)) ≤ 0))
3828, 37mpbid 232 . . . 4 (𝜑 → ¬ (abs‘(𝐹𝑁)) ≤ 0)
395adantr 480 . . . . 5 ((𝜑𝐹 ⇝ 0) → 𝑁 ∈ ℤ)
4036adantr 480 . . . . 5 ((𝜑𝐹 ⇝ 0) → (abs‘(𝐹𝑁)) ∈ ℝ)
41 simpr 484 . . . . . . 7 ((𝜑𝐹 ⇝ 0) → 𝐹 ⇝ 0)
427fvexi 6836 . . . . . . . . 9 𝑊 ∈ V
4342mptex 7159 . . . . . . . 8 (𝑖𝑊 ↦ (abs‘(𝐹𝑖))) ∈ V
4443a1i 11 . . . . . . 7 ((𝜑𝐹 ⇝ 0) → (𝑖𝑊 ↦ (abs‘(𝐹𝑖))) ∈ V)
4522adantlr 715 . . . . . . 7 (((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) → (𝐹𝑘) ∈ ℂ)
46 eqidd 2730 . . . . . . . 8 (((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) → (𝑖𝑊 ↦ (abs‘(𝐹𝑖))) = (𝑖𝑊 ↦ (abs‘(𝐹𝑖))))
47 simpr 484 . . . . . . . . . 10 ((((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) ∧ 𝑖 = 𝑘) → 𝑖 = 𝑘)
4847fveq2d 6826 . . . . . . . . 9 ((((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) ∧ 𝑖 = 𝑘) → (𝐹𝑖) = (𝐹𝑘))
4948fveq2d 6826 . . . . . . . 8 ((((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) ∧ 𝑖 = 𝑘) → (abs‘(𝐹𝑖)) = (abs‘(𝐹𝑘)))
50 simpr 484 . . . . . . . 8 (((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) → 𝑘𝑊)
51 fvex 6835 . . . . . . . . 9 (abs‘(𝐹𝑘)) ∈ V
5251a1i 11 . . . . . . . 8 (((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) → (abs‘(𝐹𝑘)) ∈ V)
5346, 49, 50, 52fvmptd 6937 . . . . . . 7 (((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) → ((𝑖𝑊 ↦ (abs‘(𝐹𝑖)))‘𝑘) = (abs‘(𝐹𝑘)))
547, 41, 44, 39, 45, 53climabs 15511 . . . . . 6 ((𝜑𝐹 ⇝ 0) → (𝑖𝑊 ↦ (abs‘(𝐹𝑖))) ⇝ (abs‘0))
55 abs0 15192 . . . . . 6 (abs‘0) = 0
5654, 55breqtrdi 5133 . . . . 5 ((𝜑𝐹 ⇝ 0) → (𝑖𝑊 ↦ (abs‘(𝐹𝑖))) ⇝ 0)
5745abscld 15346 . . . . . 6 (((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) → (abs‘(𝐹𝑘)) ∈ ℝ)
5853, 57eqeltrd 2828 . . . . 5 (((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) → ((𝑖𝑊 ↦ (abs‘(𝐹𝑖)))‘𝑘) ∈ ℝ)
59 2fveq3 6827 . . . . . . . . . . . 12 (𝑖 = 𝑁 → (abs‘(𝐹𝑖)) = (abs‘(𝐹𝑁)))
6059breq2d 5104 . . . . . . . . . . 11 (𝑖 = 𝑁 → ((abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑖)) ↔ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑁))))
6160imbi2d 340 . . . . . . . . . 10 (𝑖 = 𝑁 → ((𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑖))) ↔ (𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑁)))))
62 2fveq3 6827 . . . . . . . . . . . 12 (𝑖 = 𝑘 → (abs‘(𝐹𝑖)) = (abs‘(𝐹𝑘)))
6362breq2d 5104 . . . . . . . . . . 11 (𝑖 = 𝑘 → ((abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑖)) ↔ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))))
6463imbi2d 340 . . . . . . . . . 10 (𝑖 = 𝑘 → ((𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑖))) ↔ (𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘)))))
65 2fveq3 6827 . . . . . . . . . . . 12 (𝑖 = (𝑘 + 1) → (abs‘(𝐹𝑖)) = (abs‘(𝐹‘(𝑘 + 1))))
6665breq2d 5104 . . . . . . . . . . 11 (𝑖 = (𝑘 + 1) → ((abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑖)) ↔ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹‘(𝑘 + 1)))))
6766imbi2d 340 . . . . . . . . . 10 (𝑖 = (𝑘 + 1) → ((𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑖))) ↔ (𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹‘(𝑘 + 1))))))
6836adantr 480 . . . . . . . . . . . 12 ((𝜑𝑁 ∈ ℤ) → (abs‘(𝐹𝑁)) ∈ ℝ)
6968leidd 11686 . . . . . . . . . . 11 ((𝜑𝑁 ∈ ℤ) → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑁)))
7069expcom 413 . . . . . . . . . 10 (𝑁 ∈ ℤ → (𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑁))))
7136ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝑊) ∧ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))) → (abs‘(𝐹𝑁)) ∈ ℝ)
7222adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑘𝑊) ∧ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))) → (𝐹𝑘) ∈ ℂ)
7372abscld 15346 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝑊) ∧ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))) → (abs‘(𝐹𝑘)) ∈ ℝ)
747peano2uzs 12803 . . . . . . . . . . . . . . . . . 18 (𝑘𝑊 → (𝑘 + 1) ∈ 𝑊)
75 ovex 7382 . . . . . . . . . . . . . . . . . . 19 (𝑘 + 1) ∈ V
76 eleq1 2816 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = (𝑘 + 1) → (𝑖𝑊 ↔ (𝑘 + 1) ∈ 𝑊))
7776anbi2d 630 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = (𝑘 + 1) → ((𝜑𝑖𝑊) ↔ (𝜑 ∧ (𝑘 + 1) ∈ 𝑊)))
78 fveq2 6822 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = (𝑘 + 1) → (𝐹𝑖) = (𝐹‘(𝑘 + 1)))
7978eleq1d 2813 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = (𝑘 + 1) → ((𝐹𝑖) ∈ ℂ ↔ (𝐹‘(𝑘 + 1)) ∈ ℂ))
8077, 79imbi12d 344 . . . . . . . . . . . . . . . . . . 19 (𝑖 = (𝑘 + 1) → (((𝜑𝑖𝑊) → (𝐹𝑖) ∈ ℂ) ↔ ((𝜑 ∧ (𝑘 + 1) ∈ 𝑊) → (𝐹‘(𝑘 + 1)) ∈ ℂ)))
81 eleq1 2816 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑖 → (𝑘𝑊𝑖𝑊))
8281anbi2d 630 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑖 → ((𝜑𝑘𝑊) ↔ (𝜑𝑖𝑊)))
83 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑖 → (𝐹𝑘) = (𝐹𝑖))
8483eleq1d 2813 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑖 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑖) ∈ ℂ))
8582, 84imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑖 → (((𝜑𝑘𝑊) → (𝐹𝑘) ∈ ℂ) ↔ ((𝜑𝑖𝑊) → (𝐹𝑖) ∈ ℂ)))
8685, 22chvarvv 1989 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖𝑊) → (𝐹𝑖) ∈ ℂ)
8775, 80, 86vtocl 3513 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 + 1) ∈ 𝑊) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
8874, 87sylan2 593 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑊) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
8988adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑘𝑊) ∧ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
9089abscld 15346 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝑊) ∧ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))) → (abs‘(𝐹‘(𝑘 + 1))) ∈ ℝ)
91 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝑊) ∧ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))) → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘)))
92 dvgrat.le . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑊) → (abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1))))
9392adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝑊) ∧ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))) → (abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1))))
9471, 73, 90, 91, 93letrd 11273 . . . . . . . . . . . . . 14 (((𝜑𝑘𝑊) ∧ (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))) → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹‘(𝑘 + 1))))
9594ex 412 . . . . . . . . . . . . 13 ((𝜑𝑘𝑊) → ((abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘)) → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹‘(𝑘 + 1)))))
9617, 95sylan2br 595 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘)) → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹‘(𝑘 + 1)))))
9796expcom 413 . . . . . . . . . . 11 (𝑘 ∈ (ℤ𝑁) → (𝜑 → ((abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘)) → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹‘(𝑘 + 1))))))
9897a2d 29 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑁) → ((𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))) → (𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹‘(𝑘 + 1))))))
9961, 64, 67, 64, 70, 98uzind4 12807 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑁) → (𝜑 → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘))))
10099impcom 407 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑁)) → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘)))
10117, 100sylan2b 594 . . . . . . 7 ((𝜑𝑘𝑊) → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘)))
102101adantlr 715 . . . . . 6 (((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) → (abs‘(𝐹𝑁)) ≤ (abs‘(𝐹𝑘)))
103102, 53breqtrrd 5120 . . . . 5 (((𝜑𝐹 ⇝ 0) ∧ 𝑘𝑊) → (abs‘(𝐹𝑁)) ≤ ((𝑖𝑊 ↦ (abs‘(𝐹𝑖)))‘𝑘))
1047, 39, 40, 56, 58, 103climlec2 15566 . . . 4 ((𝜑𝐹 ⇝ 0) → (abs‘(𝐹𝑁)) ≤ 0)
10538, 104mtand 815 . . 3 (𝜑 → ¬ 𝐹 ⇝ 0)
106 eluzel2 12740 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
1073, 106syl 17 . . . . 5 (𝜑𝑀 ∈ ℤ)
108107adantr 480 . . . 4 ((𝜑 ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → 𝑀 ∈ ℤ)
109 dvgrat.f . . . . 5 (𝜑𝐹𝑉)
110109adantr 480 . . . 4 ((𝜑 ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → 𝐹𝑉)
111 simpr 484 . . . 4 ((𝜑 ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
11221adantlr 715 . . . 4 (((𝜑 ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
1132, 108, 110, 111, 112serf0 15588 . . 3 ((𝜑 ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → 𝐹 ⇝ 0)
114105, 113mtand 815 . 2 (𝜑 → ¬ seq𝑀( + , 𝐹) ∈ dom ⇝ )
115 df-nel 3030 . 2 (seq𝑀( + , 𝐹) ∉ dom ⇝ ↔ ¬ seq𝑀( + , 𝐹) ∈ dom ⇝ )
116114, 115sylibr 234 1 (𝜑 → seq𝑀( + , 𝐹) ∉ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wnel 3029  Vcvv 3436   class class class wbr 5092  cmpt 5173  dom cdm 5619  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   < clt 11149  cle 11150  cz 12471  cuz 12735  seqcseq 13908  abscabs 15141  cli 15391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-ico 13254  df-fz 13411  df-fl 13696  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396
This theorem is referenced by:  cvgdvgrat  44290
  Copyright terms: Public domain W3C validator