Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmatcl Structured version   Visualization version   GIF version

Theorem lmatcl 31109
Description: Closure of the literal matrix. (Contributed by Thierry Arnoux, 12-Sep-2020.)
Hypotheses
Ref Expression
lmatfval.m 𝑀 = (litMat‘𝑊)
lmatfval.n (𝜑𝑁 ∈ ℕ)
lmatfval.w (𝜑𝑊 ∈ Word Word 𝑉)
lmatfval.1 (𝜑 → (♯‘𝑊) = 𝑁)
lmatfval.2 ((𝜑𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊𝑖)) = 𝑁)
lmatcl.b 𝑉 = (Base‘𝑅)
lmatcl.1 𝑂 = ((1...𝑁) Mat 𝑅)
lmatcl.2 𝑃 = (Base‘𝑂)
lmatcl.r (𝜑𝑅𝑋)
Assertion
Ref Expression
lmatcl (𝜑𝑀𝑃)
Distinct variable groups:   𝑖,𝑀   𝑖,𝑁   𝑖,𝑊   𝜑,𝑖
Allowed substitution hints:   𝑃(𝑖)   𝑅(𝑖)   𝑂(𝑖)   𝑉(𝑖)   𝑋(𝑖)

Proof of Theorem lmatcl
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmatfval.m . . . 4 𝑀 = (litMat‘𝑊)
2 lmatfval.w . . . . 5 (𝜑𝑊 ∈ Word Word 𝑉)
3 lmatval 31106 . . . . 5 (𝑊 ∈ Word Word 𝑉 → (litMat‘𝑊) = (𝑘 ∈ (1...(♯‘𝑊)), 𝑗 ∈ (1...(♯‘(𝑊‘0))) ↦ ((𝑊‘(𝑘 − 1))‘(𝑗 − 1))))
42, 3syl 17 . . . 4 (𝜑 → (litMat‘𝑊) = (𝑘 ∈ (1...(♯‘𝑊)), 𝑗 ∈ (1...(♯‘(𝑊‘0))) ↦ ((𝑊‘(𝑘 − 1))‘(𝑗 − 1))))
51, 4syl5eq 2871 . . 3 (𝜑𝑀 = (𝑘 ∈ (1...(♯‘𝑊)), 𝑗 ∈ (1...(♯‘(𝑊‘0))) ↦ ((𝑊‘(𝑘 − 1))‘(𝑗 − 1))))
6 lmatfval.1 . . . . 5 (𝜑 → (♯‘𝑊) = 𝑁)
76oveq2d 7161 . . . 4 (𝜑 → (1...(♯‘𝑊)) = (1...𝑁))
8 lmatfval.n . . . . . . 7 (𝜑𝑁 ∈ ℕ)
9 lbfzo0 13077 . . . . . . 7 (0 ∈ (0..^𝑁) ↔ 𝑁 ∈ ℕ)
108, 9sylibr 237 . . . . . 6 (𝜑 → 0 ∈ (0..^𝑁))
11 0nn0 11905 . . . . . . . 8 0 ∈ ℕ0
1211a1i 11 . . . . . . 7 (𝜑 → 0 ∈ ℕ0)
13 simpr 488 . . . . . . . . 9 ((𝜑𝑖 = 0) → 𝑖 = 0)
1413eleq1d 2900 . . . . . . . 8 ((𝜑𝑖 = 0) → (𝑖 ∈ (0..^𝑁) ↔ 0 ∈ (0..^𝑁)))
1513fveq2d 6662 . . . . . . . . 9 ((𝜑𝑖 = 0) → (𝑊𝑖) = (𝑊‘0))
1615fveqeq2d 6666 . . . . . . . 8 ((𝜑𝑖 = 0) → ((♯‘(𝑊𝑖)) = 𝑁 ↔ (♯‘(𝑊‘0)) = 𝑁))
1714, 16imbi12d 348 . . . . . . 7 ((𝜑𝑖 = 0) → ((𝑖 ∈ (0..^𝑁) → (♯‘(𝑊𝑖)) = 𝑁) ↔ (0 ∈ (0..^𝑁) → (♯‘(𝑊‘0)) = 𝑁)))
18 lmatfval.2 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊𝑖)) = 𝑁)
1918ex 416 . . . . . . 7 (𝜑 → (𝑖 ∈ (0..^𝑁) → (♯‘(𝑊𝑖)) = 𝑁))
2012, 17, 19vtocld 3542 . . . . . 6 (𝜑 → (0 ∈ (0..^𝑁) → (♯‘(𝑊‘0)) = 𝑁))
2110, 20mpd 15 . . . . 5 (𝜑 → (♯‘(𝑊‘0)) = 𝑁)
2221oveq2d 7161 . . . 4 (𝜑 → (1...(♯‘(𝑊‘0))) = (1...𝑁))
23 eqidd 2825 . . . 4 (𝜑 → ((𝑊‘(𝑘 − 1))‘(𝑗 − 1)) = ((𝑊‘(𝑘 − 1))‘(𝑗 − 1)))
247, 22, 23mpoeq123dv 7218 . . 3 (𝜑 → (𝑘 ∈ (1...(♯‘𝑊)), 𝑗 ∈ (1...(♯‘(𝑊‘0))) ↦ ((𝑊‘(𝑘 − 1))‘(𝑗 − 1))) = (𝑘 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑊‘(𝑘 − 1))‘(𝑗 − 1))))
255, 24eqtrd 2859 . 2 (𝜑𝑀 = (𝑘 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑊‘(𝑘 − 1))‘(𝑗 − 1))))
26 lmatcl.1 . . 3 𝑂 = ((1...𝑁) Mat 𝑅)
27 lmatcl.b . . 3 𝑉 = (Base‘𝑅)
28 lmatcl.2 . . 3 𝑃 = (Base‘𝑂)
29 fzfid 13341 . . 3 (𝜑 → (1...𝑁) ∈ Fin)
30 lmatcl.r . . 3 (𝜑𝑅𝑋)
3123ad2ant1 1130 . . . . 5 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑊 ∈ Word Word 𝑉)
32 simp2 1134 . . . . . . 7 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑘 ∈ (1...𝑁))
33 fz1fzo0m1 13085 . . . . . . 7 (𝑘 ∈ (1...𝑁) → (𝑘 − 1) ∈ (0..^𝑁))
3432, 33syl 17 . . . . . 6 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑘 − 1) ∈ (0..^𝑁))
3563ad2ant1 1130 . . . . . . 7 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (♯‘𝑊) = 𝑁)
3635oveq2d 7161 . . . . . 6 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (0..^(♯‘𝑊)) = (0..^𝑁))
3734, 36eleqtrrd 2919 . . . . 5 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑘 − 1) ∈ (0..^(♯‘𝑊)))
38 wrdsymbcl 13875 . . . . 5 ((𝑊 ∈ Word Word 𝑉 ∧ (𝑘 − 1) ∈ (0..^(♯‘𝑊))) → (𝑊‘(𝑘 − 1)) ∈ Word 𝑉)
3931, 37, 38syl2anc 587 . . . 4 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑊‘(𝑘 − 1)) ∈ Word 𝑉)
40 simp3 1135 . . . . . 6 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (1...𝑁))
41 fz1fzo0m1 13085 . . . . . 6 (𝑗 ∈ (1...𝑁) → (𝑗 − 1) ∈ (0..^𝑁))
4240, 41syl 17 . . . . 5 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑗 − 1) ∈ (0..^𝑁))
43 ovexd 7180 . . . . . . . . . 10 (𝜑 → (𝑘 − 1) ∈ V)
44 simpr 488 . . . . . . . . . . . 12 ((𝜑𝑖 = (𝑘 − 1)) → 𝑖 = (𝑘 − 1))
45 eqidd 2825 . . . . . . . . . . . 12 ((𝜑𝑖 = (𝑘 − 1)) → (0..^𝑁) = (0..^𝑁))
4644, 45eleq12d 2910 . . . . . . . . . . 11 ((𝜑𝑖 = (𝑘 − 1)) → (𝑖 ∈ (0..^𝑁) ↔ (𝑘 − 1) ∈ (0..^𝑁)))
4744fveq2d 6662 . . . . . . . . . . . 12 ((𝜑𝑖 = (𝑘 − 1)) → (𝑊𝑖) = (𝑊‘(𝑘 − 1)))
4847fveqeq2d 6666 . . . . . . . . . . 11 ((𝜑𝑖 = (𝑘 − 1)) → ((♯‘(𝑊𝑖)) = 𝑁 ↔ (♯‘(𝑊‘(𝑘 − 1))) = 𝑁))
4946, 48imbi12d 348 . . . . . . . . . 10 ((𝜑𝑖 = (𝑘 − 1)) → ((𝑖 ∈ (0..^𝑁) → (♯‘(𝑊𝑖)) = 𝑁) ↔ ((𝑘 − 1) ∈ (0..^𝑁) → (♯‘(𝑊‘(𝑘 − 1))) = 𝑁)))
5043, 49, 19vtocld 3542 . . . . . . . . 9 (𝜑 → ((𝑘 − 1) ∈ (0..^𝑁) → (♯‘(𝑊‘(𝑘 − 1))) = 𝑁))
5150imp 410 . . . . . . . 8 ((𝜑 ∧ (𝑘 − 1) ∈ (0..^𝑁)) → (♯‘(𝑊‘(𝑘 − 1))) = 𝑁)
5233, 51sylan2 595 . . . . . . 7 ((𝜑𝑘 ∈ (1...𝑁)) → (♯‘(𝑊‘(𝑘 − 1))) = 𝑁)
53523adant3 1129 . . . . . 6 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (♯‘(𝑊‘(𝑘 − 1))) = 𝑁)
5453oveq2d 7161 . . . . 5 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (0..^(♯‘(𝑊‘(𝑘 − 1)))) = (0..^𝑁))
5542, 54eleqtrrd 2919 . . . 4 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑗 − 1) ∈ (0..^(♯‘(𝑊‘(𝑘 − 1)))))
56 wrdsymbcl 13875 . . . 4 (((𝑊‘(𝑘 − 1)) ∈ Word 𝑉 ∧ (𝑗 − 1) ∈ (0..^(♯‘(𝑊‘(𝑘 − 1))))) → ((𝑊‘(𝑘 − 1))‘(𝑗 − 1)) ∈ 𝑉)
5739, 55, 56syl2anc 587 . . 3 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → ((𝑊‘(𝑘 − 1))‘(𝑗 − 1)) ∈ 𝑉)
5826, 27, 28, 29, 30, 57matbas2d 21025 . 2 (𝜑 → (𝑘 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑊‘(𝑘 − 1))‘(𝑗 − 1))) ∈ 𝑃)
5925, 58eqeltrd 2916 1 (𝜑𝑀𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  Vcvv 3480  cfv 6343  (class class class)co 7145  cmpo 7147  0cc0 10529  1c1 10530  cmin 10862  cn 11630  0cn0 11890  ...cfz 12890  ..^cfzo 13033  chash 13691  Word cword 13862  Basecbs 16479   Mat cmat 21009  litMatclmat 31104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-tp 4554  df-op 4556  df-ot 4558  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7571  df-1st 7679  df-2nd 7680  df-supp 7821  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-1o 8092  df-oadd 8096  df-er 8279  df-map 8398  df-ixp 8452  df-en 8500  df-dom 8501  df-sdom 8502  df-fin 8503  df-fsupp 8825  df-sup 8897  df-card 9359  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11693  df-3 11694  df-4 11695  df-5 11696  df-6 11697  df-7 11698  df-8 11699  df-9 11700  df-n0 11891  df-z 11975  df-dec 12092  df-uz 12237  df-fz 12891  df-fzo 13034  df-hash 13692  df-word 13863  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-sca 16577  df-vsca 16578  df-ip 16579  df-tset 16580  df-ple 16581  df-ds 16583  df-hom 16585  df-cco 16586  df-0g 16711  df-prds 16717  df-pws 16719  df-sra 19937  df-rgmod 19938  df-dsmm 20869  df-frlm 20884  df-mat 21010  df-lmat 31105
This theorem is referenced by:  lmat22det  31115
  Copyright terms: Public domain W3C validator