Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmatcl Structured version   Visualization version   GIF version

Theorem lmatcl 32397
Description: Closure of the literal matrix. (Contributed by Thierry Arnoux, 12-Sep-2020.)
Hypotheses
Ref Expression
lmatfval.m 𝑀 = (litMat‘𝑊)
lmatfval.n (𝜑𝑁 ∈ ℕ)
lmatfval.w (𝜑𝑊 ∈ Word Word 𝑉)
lmatfval.1 (𝜑 → (♯‘𝑊) = 𝑁)
lmatfval.2 ((𝜑𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊𝑖)) = 𝑁)
lmatcl.b 𝑉 = (Base‘𝑅)
lmatcl.1 𝑂 = ((1...𝑁) Mat 𝑅)
lmatcl.2 𝑃 = (Base‘𝑂)
lmatcl.r (𝜑𝑅𝑋)
Assertion
Ref Expression
lmatcl (𝜑𝑀𝑃)
Distinct variable groups:   𝑖,𝑀   𝑖,𝑁   𝑖,𝑊   𝜑,𝑖
Allowed substitution hints:   𝑃(𝑖)   𝑅(𝑖)   𝑂(𝑖)   𝑉(𝑖)   𝑋(𝑖)

Proof of Theorem lmatcl
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmatfval.m . . . 4 𝑀 = (litMat‘𝑊)
2 lmatfval.w . . . . 5 (𝜑𝑊 ∈ Word Word 𝑉)
3 lmatval 32394 . . . . 5 (𝑊 ∈ Word Word 𝑉 → (litMat‘𝑊) = (𝑘 ∈ (1...(♯‘𝑊)), 𝑗 ∈ (1...(♯‘(𝑊‘0))) ↦ ((𝑊‘(𝑘 − 1))‘(𝑗 − 1))))
42, 3syl 17 . . . 4 (𝜑 → (litMat‘𝑊) = (𝑘 ∈ (1...(♯‘𝑊)), 𝑗 ∈ (1...(♯‘(𝑊‘0))) ↦ ((𝑊‘(𝑘 − 1))‘(𝑗 − 1))))
51, 4eqtrid 2788 . . 3 (𝜑𝑀 = (𝑘 ∈ (1...(♯‘𝑊)), 𝑗 ∈ (1...(♯‘(𝑊‘0))) ↦ ((𝑊‘(𝑘 − 1))‘(𝑗 − 1))))
6 lmatfval.1 . . . . 5 (𝜑 → (♯‘𝑊) = 𝑁)
76oveq2d 7373 . . . 4 (𝜑 → (1...(♯‘𝑊)) = (1...𝑁))
8 lmatfval.n . . . . . . 7 (𝜑𝑁 ∈ ℕ)
9 lbfzo0 13612 . . . . . . 7 (0 ∈ (0..^𝑁) ↔ 𝑁 ∈ ℕ)
108, 9sylibr 233 . . . . . 6 (𝜑 → 0 ∈ (0..^𝑁))
11 0nn0 12428 . . . . . . . 8 0 ∈ ℕ0
1211a1i 11 . . . . . . 7 (𝜑 → 0 ∈ ℕ0)
13 simpr 485 . . . . . . . . 9 ((𝜑𝑖 = 0) → 𝑖 = 0)
1413eleq1d 2822 . . . . . . . 8 ((𝜑𝑖 = 0) → (𝑖 ∈ (0..^𝑁) ↔ 0 ∈ (0..^𝑁)))
1513fveq2d 6846 . . . . . . . . 9 ((𝜑𝑖 = 0) → (𝑊𝑖) = (𝑊‘0))
1615fveqeq2d 6850 . . . . . . . 8 ((𝜑𝑖 = 0) → ((♯‘(𝑊𝑖)) = 𝑁 ↔ (♯‘(𝑊‘0)) = 𝑁))
1714, 16imbi12d 344 . . . . . . 7 ((𝜑𝑖 = 0) → ((𝑖 ∈ (0..^𝑁) → (♯‘(𝑊𝑖)) = 𝑁) ↔ (0 ∈ (0..^𝑁) → (♯‘(𝑊‘0)) = 𝑁)))
18 lmatfval.2 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊𝑖)) = 𝑁)
1918ex 413 . . . . . . 7 (𝜑 → (𝑖 ∈ (0..^𝑁) → (♯‘(𝑊𝑖)) = 𝑁))
2012, 17, 19vtocld 3511 . . . . . 6 (𝜑 → (0 ∈ (0..^𝑁) → (♯‘(𝑊‘0)) = 𝑁))
2110, 20mpd 15 . . . . 5 (𝜑 → (♯‘(𝑊‘0)) = 𝑁)
2221oveq2d 7373 . . . 4 (𝜑 → (1...(♯‘(𝑊‘0))) = (1...𝑁))
23 eqidd 2737 . . . 4 (𝜑 → ((𝑊‘(𝑘 − 1))‘(𝑗 − 1)) = ((𝑊‘(𝑘 − 1))‘(𝑗 − 1)))
247, 22, 23mpoeq123dv 7432 . . 3 (𝜑 → (𝑘 ∈ (1...(♯‘𝑊)), 𝑗 ∈ (1...(♯‘(𝑊‘0))) ↦ ((𝑊‘(𝑘 − 1))‘(𝑗 − 1))) = (𝑘 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑊‘(𝑘 − 1))‘(𝑗 − 1))))
255, 24eqtrd 2776 . 2 (𝜑𝑀 = (𝑘 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑊‘(𝑘 − 1))‘(𝑗 − 1))))
26 lmatcl.1 . . 3 𝑂 = ((1...𝑁) Mat 𝑅)
27 lmatcl.b . . 3 𝑉 = (Base‘𝑅)
28 lmatcl.2 . . 3 𝑃 = (Base‘𝑂)
29 fzfid 13878 . . 3 (𝜑 → (1...𝑁) ∈ Fin)
30 lmatcl.r . . 3 (𝜑𝑅𝑋)
3123ad2ant1 1133 . . . . 5 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑊 ∈ Word Word 𝑉)
32 simp2 1137 . . . . . . 7 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑘 ∈ (1...𝑁))
33 fz1fzo0m1 13620 . . . . . . 7 (𝑘 ∈ (1...𝑁) → (𝑘 − 1) ∈ (0..^𝑁))
3432, 33syl 17 . . . . . 6 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑘 − 1) ∈ (0..^𝑁))
3563ad2ant1 1133 . . . . . . 7 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (♯‘𝑊) = 𝑁)
3635oveq2d 7373 . . . . . 6 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (0..^(♯‘𝑊)) = (0..^𝑁))
3734, 36eleqtrrd 2841 . . . . 5 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑘 − 1) ∈ (0..^(♯‘𝑊)))
38 wrdsymbcl 14415 . . . . 5 ((𝑊 ∈ Word Word 𝑉 ∧ (𝑘 − 1) ∈ (0..^(♯‘𝑊))) → (𝑊‘(𝑘 − 1)) ∈ Word 𝑉)
3931, 37, 38syl2anc 584 . . . 4 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑊‘(𝑘 − 1)) ∈ Word 𝑉)
40 simp3 1138 . . . . . 6 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (1...𝑁))
41 fz1fzo0m1 13620 . . . . . 6 (𝑗 ∈ (1...𝑁) → (𝑗 − 1) ∈ (0..^𝑁))
4240, 41syl 17 . . . . 5 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑗 − 1) ∈ (0..^𝑁))
43 ovexd 7392 . . . . . . . . . 10 (𝜑 → (𝑘 − 1) ∈ V)
44 simpr 485 . . . . . . . . . . . 12 ((𝜑𝑖 = (𝑘 − 1)) → 𝑖 = (𝑘 − 1))
45 eqidd 2737 . . . . . . . . . . . 12 ((𝜑𝑖 = (𝑘 − 1)) → (0..^𝑁) = (0..^𝑁))
4644, 45eleq12d 2832 . . . . . . . . . . 11 ((𝜑𝑖 = (𝑘 − 1)) → (𝑖 ∈ (0..^𝑁) ↔ (𝑘 − 1) ∈ (0..^𝑁)))
4744fveq2d 6846 . . . . . . . . . . . 12 ((𝜑𝑖 = (𝑘 − 1)) → (𝑊𝑖) = (𝑊‘(𝑘 − 1)))
4847fveqeq2d 6850 . . . . . . . . . . 11 ((𝜑𝑖 = (𝑘 − 1)) → ((♯‘(𝑊𝑖)) = 𝑁 ↔ (♯‘(𝑊‘(𝑘 − 1))) = 𝑁))
4946, 48imbi12d 344 . . . . . . . . . 10 ((𝜑𝑖 = (𝑘 − 1)) → ((𝑖 ∈ (0..^𝑁) → (♯‘(𝑊𝑖)) = 𝑁) ↔ ((𝑘 − 1) ∈ (0..^𝑁) → (♯‘(𝑊‘(𝑘 − 1))) = 𝑁)))
5043, 49, 19vtocld 3511 . . . . . . . . 9 (𝜑 → ((𝑘 − 1) ∈ (0..^𝑁) → (♯‘(𝑊‘(𝑘 − 1))) = 𝑁))
5150imp 407 . . . . . . . 8 ((𝜑 ∧ (𝑘 − 1) ∈ (0..^𝑁)) → (♯‘(𝑊‘(𝑘 − 1))) = 𝑁)
5233, 51sylan2 593 . . . . . . 7 ((𝜑𝑘 ∈ (1...𝑁)) → (♯‘(𝑊‘(𝑘 − 1))) = 𝑁)
53523adant3 1132 . . . . . 6 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (♯‘(𝑊‘(𝑘 − 1))) = 𝑁)
5453oveq2d 7373 . . . . 5 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (0..^(♯‘(𝑊‘(𝑘 − 1)))) = (0..^𝑁))
5542, 54eleqtrrd 2841 . . . 4 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑗 − 1) ∈ (0..^(♯‘(𝑊‘(𝑘 − 1)))))
56 wrdsymbcl 14415 . . . 4 (((𝑊‘(𝑘 − 1)) ∈ Word 𝑉 ∧ (𝑗 − 1) ∈ (0..^(♯‘(𝑊‘(𝑘 − 1))))) → ((𝑊‘(𝑘 − 1))‘(𝑗 − 1)) ∈ 𝑉)
5739, 55, 56syl2anc 584 . . 3 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → ((𝑊‘(𝑘 − 1))‘(𝑗 − 1)) ∈ 𝑉)
5826, 27, 28, 29, 30, 57matbas2d 21772 . 2 (𝜑 → (𝑘 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑊‘(𝑘 − 1))‘(𝑗 − 1))) ∈ 𝑃)
5925, 58eqeltrd 2838 1 (𝜑𝑀𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  Vcvv 3445  cfv 6496  (class class class)co 7357  cmpo 7359  0cc0 11051  1c1 11052  cmin 11385  cn 12153  0cn0 12413  ...cfz 13424  ..^cfzo 13567  chash 14230  Word cword 14402  Basecbs 17083   Mat cmat 21754  litMatclmat 32392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-ot 4595  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-fzo 13568  df-hash 14231  df-word 14403  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-hom 17157  df-cco 17158  df-0g 17323  df-prds 17329  df-pws 17331  df-sra 20633  df-rgmod 20634  df-dsmm 21138  df-frlm 21153  df-mat 21755  df-lmat 32393
This theorem is referenced by:  lmat22det  32403
  Copyright terms: Public domain W3C validator