Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmatcl Structured version   Visualization version   GIF version

Theorem lmatcl 33762
Description: Closure of the literal matrix. (Contributed by Thierry Arnoux, 12-Sep-2020.)
Hypotheses
Ref Expression
lmatfval.m 𝑀 = (litMat‘𝑊)
lmatfval.n (𝜑𝑁 ∈ ℕ)
lmatfval.w (𝜑𝑊 ∈ Word Word 𝑉)
lmatfval.1 (𝜑 → (♯‘𝑊) = 𝑁)
lmatfval.2 ((𝜑𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊𝑖)) = 𝑁)
lmatcl.b 𝑉 = (Base‘𝑅)
lmatcl.1 𝑂 = ((1...𝑁) Mat 𝑅)
lmatcl.2 𝑃 = (Base‘𝑂)
lmatcl.r (𝜑𝑅𝑋)
Assertion
Ref Expression
lmatcl (𝜑𝑀𝑃)
Distinct variable groups:   𝑖,𝑀   𝑖,𝑁   𝑖,𝑊   𝜑,𝑖
Allowed substitution hints:   𝑃(𝑖)   𝑅(𝑖)   𝑂(𝑖)   𝑉(𝑖)   𝑋(𝑖)

Proof of Theorem lmatcl
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmatfval.m . . . 4 𝑀 = (litMat‘𝑊)
2 lmatfval.w . . . . 5 (𝜑𝑊 ∈ Word Word 𝑉)
3 lmatval 33759 . . . . 5 (𝑊 ∈ Word Word 𝑉 → (litMat‘𝑊) = (𝑘 ∈ (1...(♯‘𝑊)), 𝑗 ∈ (1...(♯‘(𝑊‘0))) ↦ ((𝑊‘(𝑘 − 1))‘(𝑗 − 1))))
42, 3syl 17 . . . 4 (𝜑 → (litMat‘𝑊) = (𝑘 ∈ (1...(♯‘𝑊)), 𝑗 ∈ (1...(♯‘(𝑊‘0))) ↦ ((𝑊‘(𝑘 − 1))‘(𝑗 − 1))))
51, 4eqtrid 2792 . . 3 (𝜑𝑀 = (𝑘 ∈ (1...(♯‘𝑊)), 𝑗 ∈ (1...(♯‘(𝑊‘0))) ↦ ((𝑊‘(𝑘 − 1))‘(𝑗 − 1))))
6 lmatfval.1 . . . . 5 (𝜑 → (♯‘𝑊) = 𝑁)
76oveq2d 7464 . . . 4 (𝜑 → (1...(♯‘𝑊)) = (1...𝑁))
8 lmatfval.n . . . . . . 7 (𝜑𝑁 ∈ ℕ)
9 lbfzo0 13756 . . . . . . 7 (0 ∈ (0..^𝑁) ↔ 𝑁 ∈ ℕ)
108, 9sylibr 234 . . . . . 6 (𝜑 → 0 ∈ (0..^𝑁))
11 0nn0 12568 . . . . . . . 8 0 ∈ ℕ0
1211a1i 11 . . . . . . 7 (𝜑 → 0 ∈ ℕ0)
13 simpr 484 . . . . . . . . 9 ((𝜑𝑖 = 0) → 𝑖 = 0)
1413eleq1d 2829 . . . . . . . 8 ((𝜑𝑖 = 0) → (𝑖 ∈ (0..^𝑁) ↔ 0 ∈ (0..^𝑁)))
1513fveq2d 6924 . . . . . . . . 9 ((𝜑𝑖 = 0) → (𝑊𝑖) = (𝑊‘0))
1615fveqeq2d 6928 . . . . . . . 8 ((𝜑𝑖 = 0) → ((♯‘(𝑊𝑖)) = 𝑁 ↔ (♯‘(𝑊‘0)) = 𝑁))
1714, 16imbi12d 344 . . . . . . 7 ((𝜑𝑖 = 0) → ((𝑖 ∈ (0..^𝑁) → (♯‘(𝑊𝑖)) = 𝑁) ↔ (0 ∈ (0..^𝑁) → (♯‘(𝑊‘0)) = 𝑁)))
18 lmatfval.2 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊𝑖)) = 𝑁)
1918ex 412 . . . . . . 7 (𝜑 → (𝑖 ∈ (0..^𝑁) → (♯‘(𝑊𝑖)) = 𝑁))
2012, 17, 19vtocld 3573 . . . . . 6 (𝜑 → (0 ∈ (0..^𝑁) → (♯‘(𝑊‘0)) = 𝑁))
2110, 20mpd 15 . . . . 5 (𝜑 → (♯‘(𝑊‘0)) = 𝑁)
2221oveq2d 7464 . . . 4 (𝜑 → (1...(♯‘(𝑊‘0))) = (1...𝑁))
23 eqidd 2741 . . . 4 (𝜑 → ((𝑊‘(𝑘 − 1))‘(𝑗 − 1)) = ((𝑊‘(𝑘 − 1))‘(𝑗 − 1)))
247, 22, 23mpoeq123dv 7525 . . 3 (𝜑 → (𝑘 ∈ (1...(♯‘𝑊)), 𝑗 ∈ (1...(♯‘(𝑊‘0))) ↦ ((𝑊‘(𝑘 − 1))‘(𝑗 − 1))) = (𝑘 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑊‘(𝑘 − 1))‘(𝑗 − 1))))
255, 24eqtrd 2780 . 2 (𝜑𝑀 = (𝑘 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑊‘(𝑘 − 1))‘(𝑗 − 1))))
26 lmatcl.1 . . 3 𝑂 = ((1...𝑁) Mat 𝑅)
27 lmatcl.b . . 3 𝑉 = (Base‘𝑅)
28 lmatcl.2 . . 3 𝑃 = (Base‘𝑂)
29 fzfid 14024 . . 3 (𝜑 → (1...𝑁) ∈ Fin)
30 lmatcl.r . . 3 (𝜑𝑅𝑋)
3123ad2ant1 1133 . . . . 5 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑊 ∈ Word Word 𝑉)
32 simp2 1137 . . . . . . 7 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑘 ∈ (1...𝑁))
33 fz1fzo0m1 13764 . . . . . . 7 (𝑘 ∈ (1...𝑁) → (𝑘 − 1) ∈ (0..^𝑁))
3432, 33syl 17 . . . . . 6 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑘 − 1) ∈ (0..^𝑁))
3563ad2ant1 1133 . . . . . . 7 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (♯‘𝑊) = 𝑁)
3635oveq2d 7464 . . . . . 6 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (0..^(♯‘𝑊)) = (0..^𝑁))
3734, 36eleqtrrd 2847 . . . . 5 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑘 − 1) ∈ (0..^(♯‘𝑊)))
38 wrdsymbcl 14575 . . . . 5 ((𝑊 ∈ Word Word 𝑉 ∧ (𝑘 − 1) ∈ (0..^(♯‘𝑊))) → (𝑊‘(𝑘 − 1)) ∈ Word 𝑉)
3931, 37, 38syl2anc 583 . . . 4 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑊‘(𝑘 − 1)) ∈ Word 𝑉)
40 simp3 1138 . . . . . 6 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (1...𝑁))
41 fz1fzo0m1 13764 . . . . . 6 (𝑗 ∈ (1...𝑁) → (𝑗 − 1) ∈ (0..^𝑁))
4240, 41syl 17 . . . . 5 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑗 − 1) ∈ (0..^𝑁))
43 ovexd 7483 . . . . . . . . . 10 (𝜑 → (𝑘 − 1) ∈ V)
44 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑖 = (𝑘 − 1)) → 𝑖 = (𝑘 − 1))
45 eqidd 2741 . . . . . . . . . . . 12 ((𝜑𝑖 = (𝑘 − 1)) → (0..^𝑁) = (0..^𝑁))
4644, 45eleq12d 2838 . . . . . . . . . . 11 ((𝜑𝑖 = (𝑘 − 1)) → (𝑖 ∈ (0..^𝑁) ↔ (𝑘 − 1) ∈ (0..^𝑁)))
4744fveq2d 6924 . . . . . . . . . . . 12 ((𝜑𝑖 = (𝑘 − 1)) → (𝑊𝑖) = (𝑊‘(𝑘 − 1)))
4847fveqeq2d 6928 . . . . . . . . . . 11 ((𝜑𝑖 = (𝑘 − 1)) → ((♯‘(𝑊𝑖)) = 𝑁 ↔ (♯‘(𝑊‘(𝑘 − 1))) = 𝑁))
4946, 48imbi12d 344 . . . . . . . . . 10 ((𝜑𝑖 = (𝑘 − 1)) → ((𝑖 ∈ (0..^𝑁) → (♯‘(𝑊𝑖)) = 𝑁) ↔ ((𝑘 − 1) ∈ (0..^𝑁) → (♯‘(𝑊‘(𝑘 − 1))) = 𝑁)))
5043, 49, 19vtocld 3573 . . . . . . . . 9 (𝜑 → ((𝑘 − 1) ∈ (0..^𝑁) → (♯‘(𝑊‘(𝑘 − 1))) = 𝑁))
5150imp 406 . . . . . . . 8 ((𝜑 ∧ (𝑘 − 1) ∈ (0..^𝑁)) → (♯‘(𝑊‘(𝑘 − 1))) = 𝑁)
5233, 51sylan2 592 . . . . . . 7 ((𝜑𝑘 ∈ (1...𝑁)) → (♯‘(𝑊‘(𝑘 − 1))) = 𝑁)
53523adant3 1132 . . . . . 6 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (♯‘(𝑊‘(𝑘 − 1))) = 𝑁)
5453oveq2d 7464 . . . . 5 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (0..^(♯‘(𝑊‘(𝑘 − 1)))) = (0..^𝑁))
5542, 54eleqtrrd 2847 . . . 4 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑗 − 1) ∈ (0..^(♯‘(𝑊‘(𝑘 − 1)))))
56 wrdsymbcl 14575 . . . 4 (((𝑊‘(𝑘 − 1)) ∈ Word 𝑉 ∧ (𝑗 − 1) ∈ (0..^(♯‘(𝑊‘(𝑘 − 1))))) → ((𝑊‘(𝑘 − 1))‘(𝑗 − 1)) ∈ 𝑉)
5739, 55, 56syl2anc 583 . . 3 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → ((𝑊‘(𝑘 − 1))‘(𝑗 − 1)) ∈ 𝑉)
5826, 27, 28, 29, 30, 57matbas2d 22450 . 2 (𝜑 → (𝑘 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑊‘(𝑘 − 1))‘(𝑗 − 1))) ∈ 𝑃)
5925, 58eqeltrd 2844 1 (𝜑𝑀𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  cfv 6573  (class class class)co 7448  cmpo 7450  0cc0 11184  1c1 11185  cmin 11520  cn 12293  0cn0 12553  ...cfz 13567  ..^cfzo 13711  chash 14379  Word cword 14562  Basecbs 17258   Mat cmat 22432  litMatclmat 33757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-prds 17507  df-pws 17509  df-sra 21195  df-rgmod 21196  df-dsmm 21775  df-frlm 21790  df-mat 22433  df-lmat 33758
This theorem is referenced by:  lmat22det  33768
  Copyright terms: Public domain W3C validator