Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmatcl Structured version   Visualization version   GIF version

Theorem lmatcl 33806
Description: Closure of the literal matrix. (Contributed by Thierry Arnoux, 12-Sep-2020.)
Hypotheses
Ref Expression
lmatfval.m 𝑀 = (litMat‘𝑊)
lmatfval.n (𝜑𝑁 ∈ ℕ)
lmatfval.w (𝜑𝑊 ∈ Word Word 𝑉)
lmatfval.1 (𝜑 → (♯‘𝑊) = 𝑁)
lmatfval.2 ((𝜑𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊𝑖)) = 𝑁)
lmatcl.b 𝑉 = (Base‘𝑅)
lmatcl.1 𝑂 = ((1...𝑁) Mat 𝑅)
lmatcl.2 𝑃 = (Base‘𝑂)
lmatcl.r (𝜑𝑅𝑋)
Assertion
Ref Expression
lmatcl (𝜑𝑀𝑃)
Distinct variable groups:   𝑖,𝑀   𝑖,𝑁   𝑖,𝑊   𝜑,𝑖
Allowed substitution hints:   𝑃(𝑖)   𝑅(𝑖)   𝑂(𝑖)   𝑉(𝑖)   𝑋(𝑖)

Proof of Theorem lmatcl
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmatfval.m . . . 4 𝑀 = (litMat‘𝑊)
2 lmatfval.w . . . . 5 (𝜑𝑊 ∈ Word Word 𝑉)
3 lmatval 33803 . . . . 5 (𝑊 ∈ Word Word 𝑉 → (litMat‘𝑊) = (𝑘 ∈ (1...(♯‘𝑊)), 𝑗 ∈ (1...(♯‘(𝑊‘0))) ↦ ((𝑊‘(𝑘 − 1))‘(𝑗 − 1))))
42, 3syl 17 . . . 4 (𝜑 → (litMat‘𝑊) = (𝑘 ∈ (1...(♯‘𝑊)), 𝑗 ∈ (1...(♯‘(𝑊‘0))) ↦ ((𝑊‘(𝑘 − 1))‘(𝑗 − 1))))
51, 4eqtrid 2776 . . 3 (𝜑𝑀 = (𝑘 ∈ (1...(♯‘𝑊)), 𝑗 ∈ (1...(♯‘(𝑊‘0))) ↦ ((𝑊‘(𝑘 − 1))‘(𝑗 − 1))))
6 lmatfval.1 . . . . 5 (𝜑 → (♯‘𝑊) = 𝑁)
76oveq2d 7403 . . . 4 (𝜑 → (1...(♯‘𝑊)) = (1...𝑁))
8 lmatfval.n . . . . . . 7 (𝜑𝑁 ∈ ℕ)
9 lbfzo0 13660 . . . . . . 7 (0 ∈ (0..^𝑁) ↔ 𝑁 ∈ ℕ)
108, 9sylibr 234 . . . . . 6 (𝜑 → 0 ∈ (0..^𝑁))
11 0nn0 12457 . . . . . . . 8 0 ∈ ℕ0
1211a1i 11 . . . . . . 7 (𝜑 → 0 ∈ ℕ0)
13 simpr 484 . . . . . . . . 9 ((𝜑𝑖 = 0) → 𝑖 = 0)
1413eleq1d 2813 . . . . . . . 8 ((𝜑𝑖 = 0) → (𝑖 ∈ (0..^𝑁) ↔ 0 ∈ (0..^𝑁)))
1513fveq2d 6862 . . . . . . . . 9 ((𝜑𝑖 = 0) → (𝑊𝑖) = (𝑊‘0))
1615fveqeq2d 6866 . . . . . . . 8 ((𝜑𝑖 = 0) → ((♯‘(𝑊𝑖)) = 𝑁 ↔ (♯‘(𝑊‘0)) = 𝑁))
1714, 16imbi12d 344 . . . . . . 7 ((𝜑𝑖 = 0) → ((𝑖 ∈ (0..^𝑁) → (♯‘(𝑊𝑖)) = 𝑁) ↔ (0 ∈ (0..^𝑁) → (♯‘(𝑊‘0)) = 𝑁)))
18 lmatfval.2 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊𝑖)) = 𝑁)
1918ex 412 . . . . . . 7 (𝜑 → (𝑖 ∈ (0..^𝑁) → (♯‘(𝑊𝑖)) = 𝑁))
2012, 17, 19vtocld 3527 . . . . . 6 (𝜑 → (0 ∈ (0..^𝑁) → (♯‘(𝑊‘0)) = 𝑁))
2110, 20mpd 15 . . . . 5 (𝜑 → (♯‘(𝑊‘0)) = 𝑁)
2221oveq2d 7403 . . . 4 (𝜑 → (1...(♯‘(𝑊‘0))) = (1...𝑁))
23 eqidd 2730 . . . 4 (𝜑 → ((𝑊‘(𝑘 − 1))‘(𝑗 − 1)) = ((𝑊‘(𝑘 − 1))‘(𝑗 − 1)))
247, 22, 23mpoeq123dv 7464 . . 3 (𝜑 → (𝑘 ∈ (1...(♯‘𝑊)), 𝑗 ∈ (1...(♯‘(𝑊‘0))) ↦ ((𝑊‘(𝑘 − 1))‘(𝑗 − 1))) = (𝑘 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑊‘(𝑘 − 1))‘(𝑗 − 1))))
255, 24eqtrd 2764 . 2 (𝜑𝑀 = (𝑘 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑊‘(𝑘 − 1))‘(𝑗 − 1))))
26 lmatcl.1 . . 3 𝑂 = ((1...𝑁) Mat 𝑅)
27 lmatcl.b . . 3 𝑉 = (Base‘𝑅)
28 lmatcl.2 . . 3 𝑃 = (Base‘𝑂)
29 fzfid 13938 . . 3 (𝜑 → (1...𝑁) ∈ Fin)
30 lmatcl.r . . 3 (𝜑𝑅𝑋)
3123ad2ant1 1133 . . . . 5 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑊 ∈ Word Word 𝑉)
32 simp2 1137 . . . . . . 7 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑘 ∈ (1...𝑁))
33 fz1fzo0m1 13671 . . . . . . 7 (𝑘 ∈ (1...𝑁) → (𝑘 − 1) ∈ (0..^𝑁))
3432, 33syl 17 . . . . . 6 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑘 − 1) ∈ (0..^𝑁))
3563ad2ant1 1133 . . . . . . 7 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (♯‘𝑊) = 𝑁)
3635oveq2d 7403 . . . . . 6 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (0..^(♯‘𝑊)) = (0..^𝑁))
3734, 36eleqtrrd 2831 . . . . 5 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑘 − 1) ∈ (0..^(♯‘𝑊)))
38 wrdsymbcl 14492 . . . . 5 ((𝑊 ∈ Word Word 𝑉 ∧ (𝑘 − 1) ∈ (0..^(♯‘𝑊))) → (𝑊‘(𝑘 − 1)) ∈ Word 𝑉)
3931, 37, 38syl2anc 584 . . . 4 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑊‘(𝑘 − 1)) ∈ Word 𝑉)
40 simp3 1138 . . . . . 6 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (1...𝑁))
41 fz1fzo0m1 13671 . . . . . 6 (𝑗 ∈ (1...𝑁) → (𝑗 − 1) ∈ (0..^𝑁))
4240, 41syl 17 . . . . 5 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑗 − 1) ∈ (0..^𝑁))
43 ovexd 7422 . . . . . . . . . 10 (𝜑 → (𝑘 − 1) ∈ V)
44 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑖 = (𝑘 − 1)) → 𝑖 = (𝑘 − 1))
45 eqidd 2730 . . . . . . . . . . . 12 ((𝜑𝑖 = (𝑘 − 1)) → (0..^𝑁) = (0..^𝑁))
4644, 45eleq12d 2822 . . . . . . . . . . 11 ((𝜑𝑖 = (𝑘 − 1)) → (𝑖 ∈ (0..^𝑁) ↔ (𝑘 − 1) ∈ (0..^𝑁)))
4744fveq2d 6862 . . . . . . . . . . . 12 ((𝜑𝑖 = (𝑘 − 1)) → (𝑊𝑖) = (𝑊‘(𝑘 − 1)))
4847fveqeq2d 6866 . . . . . . . . . . 11 ((𝜑𝑖 = (𝑘 − 1)) → ((♯‘(𝑊𝑖)) = 𝑁 ↔ (♯‘(𝑊‘(𝑘 − 1))) = 𝑁))
4946, 48imbi12d 344 . . . . . . . . . 10 ((𝜑𝑖 = (𝑘 − 1)) → ((𝑖 ∈ (0..^𝑁) → (♯‘(𝑊𝑖)) = 𝑁) ↔ ((𝑘 − 1) ∈ (0..^𝑁) → (♯‘(𝑊‘(𝑘 − 1))) = 𝑁)))
5043, 49, 19vtocld 3527 . . . . . . . . 9 (𝜑 → ((𝑘 − 1) ∈ (0..^𝑁) → (♯‘(𝑊‘(𝑘 − 1))) = 𝑁))
5150imp 406 . . . . . . . 8 ((𝜑 ∧ (𝑘 − 1) ∈ (0..^𝑁)) → (♯‘(𝑊‘(𝑘 − 1))) = 𝑁)
5233, 51sylan2 593 . . . . . . 7 ((𝜑𝑘 ∈ (1...𝑁)) → (♯‘(𝑊‘(𝑘 − 1))) = 𝑁)
53523adant3 1132 . . . . . 6 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (♯‘(𝑊‘(𝑘 − 1))) = 𝑁)
5453oveq2d 7403 . . . . 5 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (0..^(♯‘(𝑊‘(𝑘 − 1)))) = (0..^𝑁))
5542, 54eleqtrrd 2831 . . . 4 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑗 − 1) ∈ (0..^(♯‘(𝑊‘(𝑘 − 1)))))
56 wrdsymbcl 14492 . . . 4 (((𝑊‘(𝑘 − 1)) ∈ Word 𝑉 ∧ (𝑗 − 1) ∈ (0..^(♯‘(𝑊‘(𝑘 − 1))))) → ((𝑊‘(𝑘 − 1))‘(𝑗 − 1)) ∈ 𝑉)
5739, 55, 56syl2anc 584 . . 3 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → ((𝑊‘(𝑘 − 1))‘(𝑗 − 1)) ∈ 𝑉)
5826, 27, 28, 29, 30, 57matbas2d 22310 . 2 (𝜑 → (𝑘 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑊‘(𝑘 − 1))‘(𝑗 − 1))) ∈ 𝑃)
5925, 58eqeltrd 2828 1 (𝜑𝑀𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3447  cfv 6511  (class class class)co 7387  cmpo 7389  0cc0 11068  1c1 11069  cmin 11405  cn 12186  0cn0 12442  ...cfz 13468  ..^cfzo 13615  chash 14295  Word cword 14478  Basecbs 17179   Mat cmat 22294  litMatclmat 33801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-prds 17410  df-pws 17412  df-sra 21080  df-rgmod 21081  df-dsmm 21641  df-frlm 21656  df-mat 22295  df-lmat 33802
This theorem is referenced by:  lmat22det  33812
  Copyright terms: Public domain W3C validator