Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmatcl Structured version   Visualization version   GIF version

Theorem lmatcl 33816
Description: Closure of the literal matrix. (Contributed by Thierry Arnoux, 12-Sep-2020.)
Hypotheses
Ref Expression
lmatfval.m 𝑀 = (litMat‘𝑊)
lmatfval.n (𝜑𝑁 ∈ ℕ)
lmatfval.w (𝜑𝑊 ∈ Word Word 𝑉)
lmatfval.1 (𝜑 → (♯‘𝑊) = 𝑁)
lmatfval.2 ((𝜑𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊𝑖)) = 𝑁)
lmatcl.b 𝑉 = (Base‘𝑅)
lmatcl.1 𝑂 = ((1...𝑁) Mat 𝑅)
lmatcl.2 𝑃 = (Base‘𝑂)
lmatcl.r (𝜑𝑅𝑋)
Assertion
Ref Expression
lmatcl (𝜑𝑀𝑃)
Distinct variable groups:   𝑖,𝑀   𝑖,𝑁   𝑖,𝑊   𝜑,𝑖
Allowed substitution hints:   𝑃(𝑖)   𝑅(𝑖)   𝑂(𝑖)   𝑉(𝑖)   𝑋(𝑖)

Proof of Theorem lmatcl
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmatfval.m . . . 4 𝑀 = (litMat‘𝑊)
2 lmatfval.w . . . . 5 (𝜑𝑊 ∈ Word Word 𝑉)
3 lmatval 33813 . . . . 5 (𝑊 ∈ Word Word 𝑉 → (litMat‘𝑊) = (𝑘 ∈ (1...(♯‘𝑊)), 𝑗 ∈ (1...(♯‘(𝑊‘0))) ↦ ((𝑊‘(𝑘 − 1))‘(𝑗 − 1))))
42, 3syl 17 . . . 4 (𝜑 → (litMat‘𝑊) = (𝑘 ∈ (1...(♯‘𝑊)), 𝑗 ∈ (1...(♯‘(𝑊‘0))) ↦ ((𝑊‘(𝑘 − 1))‘(𝑗 − 1))))
51, 4eqtrid 2788 . . 3 (𝜑𝑀 = (𝑘 ∈ (1...(♯‘𝑊)), 𝑗 ∈ (1...(♯‘(𝑊‘0))) ↦ ((𝑊‘(𝑘 − 1))‘(𝑗 − 1))))
6 lmatfval.1 . . . . 5 (𝜑 → (♯‘𝑊) = 𝑁)
76oveq2d 7448 . . . 4 (𝜑 → (1...(♯‘𝑊)) = (1...𝑁))
8 lmatfval.n . . . . . . 7 (𝜑𝑁 ∈ ℕ)
9 lbfzo0 13740 . . . . . . 7 (0 ∈ (0..^𝑁) ↔ 𝑁 ∈ ℕ)
108, 9sylibr 234 . . . . . 6 (𝜑 → 0 ∈ (0..^𝑁))
11 0nn0 12543 . . . . . . . 8 0 ∈ ℕ0
1211a1i 11 . . . . . . 7 (𝜑 → 0 ∈ ℕ0)
13 simpr 484 . . . . . . . . 9 ((𝜑𝑖 = 0) → 𝑖 = 0)
1413eleq1d 2825 . . . . . . . 8 ((𝜑𝑖 = 0) → (𝑖 ∈ (0..^𝑁) ↔ 0 ∈ (0..^𝑁)))
1513fveq2d 6909 . . . . . . . . 9 ((𝜑𝑖 = 0) → (𝑊𝑖) = (𝑊‘0))
1615fveqeq2d 6913 . . . . . . . 8 ((𝜑𝑖 = 0) → ((♯‘(𝑊𝑖)) = 𝑁 ↔ (♯‘(𝑊‘0)) = 𝑁))
1714, 16imbi12d 344 . . . . . . 7 ((𝜑𝑖 = 0) → ((𝑖 ∈ (0..^𝑁) → (♯‘(𝑊𝑖)) = 𝑁) ↔ (0 ∈ (0..^𝑁) → (♯‘(𝑊‘0)) = 𝑁)))
18 lmatfval.2 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊𝑖)) = 𝑁)
1918ex 412 . . . . . . 7 (𝜑 → (𝑖 ∈ (0..^𝑁) → (♯‘(𝑊𝑖)) = 𝑁))
2012, 17, 19vtocld 3560 . . . . . 6 (𝜑 → (0 ∈ (0..^𝑁) → (♯‘(𝑊‘0)) = 𝑁))
2110, 20mpd 15 . . . . 5 (𝜑 → (♯‘(𝑊‘0)) = 𝑁)
2221oveq2d 7448 . . . 4 (𝜑 → (1...(♯‘(𝑊‘0))) = (1...𝑁))
23 eqidd 2737 . . . 4 (𝜑 → ((𝑊‘(𝑘 − 1))‘(𝑗 − 1)) = ((𝑊‘(𝑘 − 1))‘(𝑗 − 1)))
247, 22, 23mpoeq123dv 7509 . . 3 (𝜑 → (𝑘 ∈ (1...(♯‘𝑊)), 𝑗 ∈ (1...(♯‘(𝑊‘0))) ↦ ((𝑊‘(𝑘 − 1))‘(𝑗 − 1))) = (𝑘 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑊‘(𝑘 − 1))‘(𝑗 − 1))))
255, 24eqtrd 2776 . 2 (𝜑𝑀 = (𝑘 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑊‘(𝑘 − 1))‘(𝑗 − 1))))
26 lmatcl.1 . . 3 𝑂 = ((1...𝑁) Mat 𝑅)
27 lmatcl.b . . 3 𝑉 = (Base‘𝑅)
28 lmatcl.2 . . 3 𝑃 = (Base‘𝑂)
29 fzfid 14015 . . 3 (𝜑 → (1...𝑁) ∈ Fin)
30 lmatcl.r . . 3 (𝜑𝑅𝑋)
3123ad2ant1 1133 . . . . 5 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑊 ∈ Word Word 𝑉)
32 simp2 1137 . . . . . . 7 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑘 ∈ (1...𝑁))
33 fz1fzo0m1 13751 . . . . . . 7 (𝑘 ∈ (1...𝑁) → (𝑘 − 1) ∈ (0..^𝑁))
3432, 33syl 17 . . . . . 6 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑘 − 1) ∈ (0..^𝑁))
3563ad2ant1 1133 . . . . . . 7 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (♯‘𝑊) = 𝑁)
3635oveq2d 7448 . . . . . 6 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (0..^(♯‘𝑊)) = (0..^𝑁))
3734, 36eleqtrrd 2843 . . . . 5 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑘 − 1) ∈ (0..^(♯‘𝑊)))
38 wrdsymbcl 14566 . . . . 5 ((𝑊 ∈ Word Word 𝑉 ∧ (𝑘 − 1) ∈ (0..^(♯‘𝑊))) → (𝑊‘(𝑘 − 1)) ∈ Word 𝑉)
3931, 37, 38syl2anc 584 . . . 4 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑊‘(𝑘 − 1)) ∈ Word 𝑉)
40 simp3 1138 . . . . . 6 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (1...𝑁))
41 fz1fzo0m1 13751 . . . . . 6 (𝑗 ∈ (1...𝑁) → (𝑗 − 1) ∈ (0..^𝑁))
4240, 41syl 17 . . . . 5 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑗 − 1) ∈ (0..^𝑁))
43 ovexd 7467 . . . . . . . . . 10 (𝜑 → (𝑘 − 1) ∈ V)
44 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑖 = (𝑘 − 1)) → 𝑖 = (𝑘 − 1))
45 eqidd 2737 . . . . . . . . . . . 12 ((𝜑𝑖 = (𝑘 − 1)) → (0..^𝑁) = (0..^𝑁))
4644, 45eleq12d 2834 . . . . . . . . . . 11 ((𝜑𝑖 = (𝑘 − 1)) → (𝑖 ∈ (0..^𝑁) ↔ (𝑘 − 1) ∈ (0..^𝑁)))
4744fveq2d 6909 . . . . . . . . . . . 12 ((𝜑𝑖 = (𝑘 − 1)) → (𝑊𝑖) = (𝑊‘(𝑘 − 1)))
4847fveqeq2d 6913 . . . . . . . . . . 11 ((𝜑𝑖 = (𝑘 − 1)) → ((♯‘(𝑊𝑖)) = 𝑁 ↔ (♯‘(𝑊‘(𝑘 − 1))) = 𝑁))
4946, 48imbi12d 344 . . . . . . . . . 10 ((𝜑𝑖 = (𝑘 − 1)) → ((𝑖 ∈ (0..^𝑁) → (♯‘(𝑊𝑖)) = 𝑁) ↔ ((𝑘 − 1) ∈ (0..^𝑁) → (♯‘(𝑊‘(𝑘 − 1))) = 𝑁)))
5043, 49, 19vtocld 3560 . . . . . . . . 9 (𝜑 → ((𝑘 − 1) ∈ (0..^𝑁) → (♯‘(𝑊‘(𝑘 − 1))) = 𝑁))
5150imp 406 . . . . . . . 8 ((𝜑 ∧ (𝑘 − 1) ∈ (0..^𝑁)) → (♯‘(𝑊‘(𝑘 − 1))) = 𝑁)
5233, 51sylan2 593 . . . . . . 7 ((𝜑𝑘 ∈ (1...𝑁)) → (♯‘(𝑊‘(𝑘 − 1))) = 𝑁)
53523adant3 1132 . . . . . 6 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (♯‘(𝑊‘(𝑘 − 1))) = 𝑁)
5453oveq2d 7448 . . . . 5 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (0..^(♯‘(𝑊‘(𝑘 − 1)))) = (0..^𝑁))
5542, 54eleqtrrd 2843 . . . 4 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑗 − 1) ∈ (0..^(♯‘(𝑊‘(𝑘 − 1)))))
56 wrdsymbcl 14566 . . . 4 (((𝑊‘(𝑘 − 1)) ∈ Word 𝑉 ∧ (𝑗 − 1) ∈ (0..^(♯‘(𝑊‘(𝑘 − 1))))) → ((𝑊‘(𝑘 − 1))‘(𝑗 − 1)) ∈ 𝑉)
5739, 55, 56syl2anc 584 . . 3 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → ((𝑊‘(𝑘 − 1))‘(𝑗 − 1)) ∈ 𝑉)
5826, 27, 28, 29, 30, 57matbas2d 22430 . 2 (𝜑 → (𝑘 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑊‘(𝑘 − 1))‘(𝑗 − 1))) ∈ 𝑃)
5925, 58eqeltrd 2840 1 (𝜑𝑀𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  Vcvv 3479  cfv 6560  (class class class)co 7432  cmpo 7434  0cc0 11156  1c1 11157  cmin 11493  cn 12267  0cn0 12528  ...cfz 13548  ..^cfzo 13695  chash 14370  Word cword 14553  Basecbs 17248   Mat cmat 22412  litMatclmat 33811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-ot 4634  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-map 8869  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-sup 9483  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-fz 13549  df-fzo 13696  df-hash 14371  df-word 14554  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17487  df-prds 17493  df-pws 17495  df-sra 21173  df-rgmod 21174  df-dsmm 21753  df-frlm 21768  df-mat 22413  df-lmat 33812
This theorem is referenced by:  lmat22det  33822
  Copyright terms: Public domain W3C validator