| Step | Hyp | Ref
| Expression |
| 1 | | lmatfval.m |
. . . 4
⊢ 𝑀 = (litMat‘𝑊) |
| 2 | | lmatfval.w |
. . . . 5
⊢ (𝜑 → 𝑊 ∈ Word Word 𝑉) |
| 3 | | lmatval 33849 |
. . . . 5
⊢ (𝑊 ∈ Word Word 𝑉 → (litMat‘𝑊) = (𝑘 ∈ (1...(♯‘𝑊)), 𝑗 ∈ (1...(♯‘(𝑊‘0))) ↦ ((𝑊‘(𝑘 − 1))‘(𝑗 − 1)))) |
| 4 | 2, 3 | syl 17 |
. . . 4
⊢ (𝜑 → (litMat‘𝑊) = (𝑘 ∈ (1...(♯‘𝑊)), 𝑗 ∈ (1...(♯‘(𝑊‘0))) ↦ ((𝑊‘(𝑘 − 1))‘(𝑗 − 1)))) |
| 5 | 1, 4 | eqtrid 2783 |
. . 3
⊢ (𝜑 → 𝑀 = (𝑘 ∈ (1...(♯‘𝑊)), 𝑗 ∈ (1...(♯‘(𝑊‘0))) ↦ ((𝑊‘(𝑘 − 1))‘(𝑗 − 1)))) |
| 6 | | lmatfval.1 |
. . . . 5
⊢ (𝜑 → (♯‘𝑊) = 𝑁) |
| 7 | 6 | oveq2d 7426 |
. . . 4
⊢ (𝜑 → (1...(♯‘𝑊)) = (1...𝑁)) |
| 8 | | lmatfval.n |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 9 | | lbfzo0 13721 |
. . . . . . 7
⊢ (0 ∈
(0..^𝑁) ↔ 𝑁 ∈
ℕ) |
| 10 | 8, 9 | sylibr 234 |
. . . . . 6
⊢ (𝜑 → 0 ∈ (0..^𝑁)) |
| 11 | | 0nn0 12521 |
. . . . . . . 8
⊢ 0 ∈
ℕ0 |
| 12 | 11 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 0 ∈
ℕ0) |
| 13 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 = 0) → 𝑖 = 0) |
| 14 | 13 | eleq1d 2820 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 = 0) → (𝑖 ∈ (0..^𝑁) ↔ 0 ∈ (0..^𝑁))) |
| 15 | 13 | fveq2d 6885 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 = 0) → (𝑊‘𝑖) = (𝑊‘0)) |
| 16 | 15 | fveqeq2d 6889 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 = 0) → ((♯‘(𝑊‘𝑖)) = 𝑁 ↔ (♯‘(𝑊‘0)) = 𝑁)) |
| 17 | 14, 16 | imbi12d 344 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 0) → ((𝑖 ∈ (0..^𝑁) → (♯‘(𝑊‘𝑖)) = 𝑁) ↔ (0 ∈ (0..^𝑁) → (♯‘(𝑊‘0)) = 𝑁))) |
| 18 | | lmatfval.2 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊‘𝑖)) = 𝑁) |
| 19 | 18 | ex 412 |
. . . . . . 7
⊢ (𝜑 → (𝑖 ∈ (0..^𝑁) → (♯‘(𝑊‘𝑖)) = 𝑁)) |
| 20 | 12, 17, 19 | vtocld 3545 |
. . . . . 6
⊢ (𝜑 → (0 ∈ (0..^𝑁) → (♯‘(𝑊‘0)) = 𝑁)) |
| 21 | 10, 20 | mpd 15 |
. . . . 5
⊢ (𝜑 → (♯‘(𝑊‘0)) = 𝑁) |
| 22 | 21 | oveq2d 7426 |
. . . 4
⊢ (𝜑 → (1...(♯‘(𝑊‘0))) = (1...𝑁)) |
| 23 | | eqidd 2737 |
. . . 4
⊢ (𝜑 → ((𝑊‘(𝑘 − 1))‘(𝑗 − 1)) = ((𝑊‘(𝑘 − 1))‘(𝑗 − 1))) |
| 24 | 7, 22, 23 | mpoeq123dv 7487 |
. . 3
⊢ (𝜑 → (𝑘 ∈ (1...(♯‘𝑊)), 𝑗 ∈ (1...(♯‘(𝑊‘0))) ↦ ((𝑊‘(𝑘 − 1))‘(𝑗 − 1))) = (𝑘 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑊‘(𝑘 − 1))‘(𝑗 − 1)))) |
| 25 | 5, 24 | eqtrd 2771 |
. 2
⊢ (𝜑 → 𝑀 = (𝑘 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑊‘(𝑘 − 1))‘(𝑗 − 1)))) |
| 26 | | lmatcl.1 |
. . 3
⊢ 𝑂 = ((1...𝑁) Mat 𝑅) |
| 27 | | lmatcl.b |
. . 3
⊢ 𝑉 = (Base‘𝑅) |
| 28 | | lmatcl.2 |
. . 3
⊢ 𝑃 = (Base‘𝑂) |
| 29 | | fzfid 13996 |
. . 3
⊢ (𝜑 → (1...𝑁) ∈ Fin) |
| 30 | | lmatcl.r |
. . 3
⊢ (𝜑 → 𝑅 ∈ 𝑋) |
| 31 | 2 | 3ad2ant1 1133 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑊 ∈ Word Word 𝑉) |
| 32 | | simp2 1137 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑘 ∈ (1...𝑁)) |
| 33 | | fz1fzo0m1 13732 |
. . . . . . 7
⊢ (𝑘 ∈ (1...𝑁) → (𝑘 − 1) ∈ (0..^𝑁)) |
| 34 | 32, 33 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑘 − 1) ∈ (0..^𝑁)) |
| 35 | 6 | 3ad2ant1 1133 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (♯‘𝑊) = 𝑁) |
| 36 | 35 | oveq2d 7426 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (0..^(♯‘𝑊)) = (0..^𝑁)) |
| 37 | 34, 36 | eleqtrrd 2838 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑘 − 1) ∈ (0..^(♯‘𝑊))) |
| 38 | | wrdsymbcl 14550 |
. . . . 5
⊢ ((𝑊 ∈ Word Word 𝑉 ∧ (𝑘 − 1) ∈ (0..^(♯‘𝑊))) → (𝑊‘(𝑘 − 1)) ∈ Word 𝑉) |
| 39 | 31, 37, 38 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑊‘(𝑘 − 1)) ∈ Word 𝑉) |
| 40 | | simp3 1138 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (1...𝑁)) |
| 41 | | fz1fzo0m1 13732 |
. . . . . 6
⊢ (𝑗 ∈ (1...𝑁) → (𝑗 − 1) ∈ (0..^𝑁)) |
| 42 | 40, 41 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑗 − 1) ∈ (0..^𝑁)) |
| 43 | | ovexd 7445 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑘 − 1) ∈ V) |
| 44 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 = (𝑘 − 1)) → 𝑖 = (𝑘 − 1)) |
| 45 | | eqidd 2737 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 = (𝑘 − 1)) → (0..^𝑁) = (0..^𝑁)) |
| 46 | 44, 45 | eleq12d 2829 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 = (𝑘 − 1)) → (𝑖 ∈ (0..^𝑁) ↔ (𝑘 − 1) ∈ (0..^𝑁))) |
| 47 | 44 | fveq2d 6885 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 = (𝑘 − 1)) → (𝑊‘𝑖) = (𝑊‘(𝑘 − 1))) |
| 48 | 47 | fveqeq2d 6889 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 = (𝑘 − 1)) → ((♯‘(𝑊‘𝑖)) = 𝑁 ↔ (♯‘(𝑊‘(𝑘 − 1))) = 𝑁)) |
| 49 | 46, 48 | imbi12d 344 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 = (𝑘 − 1)) → ((𝑖 ∈ (0..^𝑁) → (♯‘(𝑊‘𝑖)) = 𝑁) ↔ ((𝑘 − 1) ∈ (0..^𝑁) → (♯‘(𝑊‘(𝑘 − 1))) = 𝑁))) |
| 50 | 43, 49, 19 | vtocld 3545 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑘 − 1) ∈ (0..^𝑁) → (♯‘(𝑊‘(𝑘 − 1))) = 𝑁)) |
| 51 | 50 | imp 406 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑘 − 1) ∈ (0..^𝑁)) → (♯‘(𝑊‘(𝑘 − 1))) = 𝑁) |
| 52 | 33, 51 | sylan2 593 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁)) → (♯‘(𝑊‘(𝑘 − 1))) = 𝑁) |
| 53 | 52 | 3adant3 1132 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (♯‘(𝑊‘(𝑘 − 1))) = 𝑁) |
| 54 | 53 | oveq2d 7426 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (0..^(♯‘(𝑊‘(𝑘 − 1)))) = (0..^𝑁)) |
| 55 | 42, 54 | eleqtrrd 2838 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑗 − 1) ∈ (0..^(♯‘(𝑊‘(𝑘 − 1))))) |
| 56 | | wrdsymbcl 14550 |
. . . 4
⊢ (((𝑊‘(𝑘 − 1)) ∈ Word 𝑉 ∧ (𝑗 − 1) ∈ (0..^(♯‘(𝑊‘(𝑘 − 1))))) → ((𝑊‘(𝑘 − 1))‘(𝑗 − 1)) ∈ 𝑉) |
| 57 | 39, 55, 56 | syl2anc 584 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → ((𝑊‘(𝑘 − 1))‘(𝑗 − 1)) ∈ 𝑉) |
| 58 | 26, 27, 28, 29, 30, 57 | matbas2d 22366 |
. 2
⊢ (𝜑 → (𝑘 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑊‘(𝑘 − 1))‘(𝑗 − 1))) ∈ 𝑃) |
| 59 | 25, 58 | eqeltrd 2835 |
1
⊢ (𝜑 → 𝑀 ∈ 𝑃) |