Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfatbrafv2b Structured version   Visualization version   GIF version

Theorem dfatbrafv2b 47160
Description: Equivalence of function value and binary relation, analogous to fnbrfvb 6973 or funbrfvb 6975. 𝐵 ∈ V is required, because otherwise 𝐴𝐹𝐵 ↔ ∅ ∈ 𝐹 can be true, but (𝐹''''𝐴) = 𝐵 is always false (because of dfatafv2ex 47128). (Contributed by AV, 6-Sep-2022.)
Assertion
Ref Expression
dfatbrafv2b ((𝐹 defAt 𝐴𝐵𝑊) → ((𝐹''''𝐴) = 𝐵𝐴𝐹𝐵))

Proof of Theorem dfatbrafv2b
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . 4 (𝐹''''𝐴) = (𝐹''''𝐴)
2 dfatafv2ex 47128 . . . . . 6 (𝐹 defAt 𝐴 → (𝐹''''𝐴) ∈ V)
32adantr 480 . . . . 5 ((𝐹 defAt 𝐴𝐵𝑊) → (𝐹''''𝐴) ∈ V)
4 eqeq2 2752 . . . . . . 7 (𝑥 = (𝐹''''𝐴) → ((𝐹''''𝐴) = 𝑥 ↔ (𝐹''''𝐴) = (𝐹''''𝐴)))
5 breq2 5170 . . . . . . 7 (𝑥 = (𝐹''''𝐴) → (𝐴𝐹𝑥𝐴𝐹(𝐹''''𝐴)))
64, 5bibi12d 345 . . . . . 6 (𝑥 = (𝐹''''𝐴) → (((𝐹''''𝐴) = 𝑥𝐴𝐹𝑥) ↔ ((𝐹''''𝐴) = (𝐹''''𝐴) ↔ 𝐴𝐹(𝐹''''𝐴))))
76adantl 481 . . . . 5 (((𝐹 defAt 𝐴𝐵𝑊) ∧ 𝑥 = (𝐹''''𝐴)) → (((𝐹''''𝐴) = 𝑥𝐴𝐹𝑥) ↔ ((𝐹''''𝐴) = (𝐹''''𝐴) ↔ 𝐴𝐹(𝐹''''𝐴))))
8 dfdfat2 47043 . . . . . . 7 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥))
9 tz6.12c-afv2 47157 . . . . . . 7 (∃!𝑥 𝐴𝐹𝑥 → ((𝐹''''𝐴) = 𝑥𝐴𝐹𝑥))
108, 9simplbiim 504 . . . . . 6 (𝐹 defAt 𝐴 → ((𝐹''''𝐴) = 𝑥𝐴𝐹𝑥))
1110adantr 480 . . . . 5 ((𝐹 defAt 𝐴𝐵𝑊) → ((𝐹''''𝐴) = 𝑥𝐴𝐹𝑥))
123, 7, 11vtocld 3573 . . . 4 ((𝐹 defAt 𝐴𝐵𝑊) → ((𝐹''''𝐴) = (𝐹''''𝐴) ↔ 𝐴𝐹(𝐹''''𝐴)))
131, 12mpbii 233 . . 3 ((𝐹 defAt 𝐴𝐵𝑊) → 𝐴𝐹(𝐹''''𝐴))
14 breq2 5170 . . 3 ((𝐹''''𝐴) = 𝐵 → (𝐴𝐹(𝐹''''𝐴) ↔ 𝐴𝐹𝐵))
1513, 14syl5ibcom 245 . 2 ((𝐹 defAt 𝐴𝐵𝑊) → ((𝐹''''𝐴) = 𝐵𝐴𝐹𝐵))
16 df-dfat 47034 . . . 4 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
17 simpll 766 . . . . 5 (((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐵𝑊) → 𝐴 ∈ dom 𝐹)
18 simpr 484 . . . . 5 (((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐵𝑊) → 𝐵𝑊)
19 simpr 484 . . . . . 6 ((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) → Fun (𝐹 ↾ {𝐴}))
2019adantr 480 . . . . 5 (((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐵𝑊) → Fun (𝐹 ↾ {𝐴}))
2117, 18, 20jca31 514 . . . 4 (((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐵𝑊) → ((𝐴 ∈ dom 𝐹𝐵𝑊) ∧ Fun (𝐹 ↾ {𝐴})))
2216, 21sylanb 580 . . 3 ((𝐹 defAt 𝐴𝐵𝑊) → ((𝐴 ∈ dom 𝐹𝐵𝑊) ∧ Fun (𝐹 ↾ {𝐴})))
23 funressnbrafv2 47159 . . 3 (((𝐴 ∈ dom 𝐹𝐵𝑊) ∧ Fun (𝐹 ↾ {𝐴})) → (𝐴𝐹𝐵 → (𝐹''''𝐴) = 𝐵))
2422, 23syl 17 . 2 ((𝐹 defAt 𝐴𝐵𝑊) → (𝐴𝐹𝐵 → (𝐹''''𝐴) = 𝐵))
2515, 24impbid 212 1 ((𝐹 defAt 𝐴𝐵𝑊) → ((𝐹''''𝐴) = 𝐵𝐴𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  ∃!weu 2571  Vcvv 3488  {csn 4648   class class class wbr 5166  dom cdm 5700  cres 5702  Fun wfun 6567   defAt wdfat 47031  ''''cafv2 47123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-res 5712  df-iota 6525  df-fun 6575  df-fn 6576  df-dfat 47034  df-afv2 47124
This theorem is referenced by:  dfatopafv2b  47161  dfatsnafv2  47167  dfatcolem  47170
  Copyright terms: Public domain W3C validator