Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfatbrafv2b Structured version   Visualization version   GIF version

Theorem dfatbrafv2b 43451
Description: Equivalence of function value and binary relation, analogous to fnbrfvb 6721 or funbrfvb 6723. 𝐵 ∈ V is required, because otherwise 𝐴𝐹𝐵 ↔ ∅ ∈ 𝐹 can be true, but (𝐹''''𝐴) = 𝐵 is always false (because of dfatafv2ex 43419). (Contributed by AV, 6-Sep-2022.)
Assertion
Ref Expression
dfatbrafv2b ((𝐹 defAt 𝐴𝐵𝑊) → ((𝐹''''𝐴) = 𝐵𝐴𝐹𝐵))

Proof of Theorem dfatbrafv2b
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2824 . . . 4 (𝐹''''𝐴) = (𝐹''''𝐴)
2 dfatafv2ex 43419 . . . . . 6 (𝐹 defAt 𝐴 → (𝐹''''𝐴) ∈ V)
32adantr 483 . . . . 5 ((𝐹 defAt 𝐴𝐵𝑊) → (𝐹''''𝐴) ∈ V)
4 eqeq2 2836 . . . . . . 7 (𝑥 = (𝐹''''𝐴) → ((𝐹''''𝐴) = 𝑥 ↔ (𝐹''''𝐴) = (𝐹''''𝐴)))
5 breq2 5073 . . . . . . 7 (𝑥 = (𝐹''''𝐴) → (𝐴𝐹𝑥𝐴𝐹(𝐹''''𝐴)))
64, 5bibi12d 348 . . . . . 6 (𝑥 = (𝐹''''𝐴) → (((𝐹''''𝐴) = 𝑥𝐴𝐹𝑥) ↔ ((𝐹''''𝐴) = (𝐹''''𝐴) ↔ 𝐴𝐹(𝐹''''𝐴))))
76adantl 484 . . . . 5 (((𝐹 defAt 𝐴𝐵𝑊) ∧ 𝑥 = (𝐹''''𝐴)) → (((𝐹''''𝐴) = 𝑥𝐴𝐹𝑥) ↔ ((𝐹''''𝐴) = (𝐹''''𝐴) ↔ 𝐴𝐹(𝐹''''𝐴))))
8 dfdfat2 43334 . . . . . . 7 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥))
9 tz6.12c-afv2 43448 . . . . . . 7 (∃!𝑥 𝐴𝐹𝑥 → ((𝐹''''𝐴) = 𝑥𝐴𝐹𝑥))
108, 9simplbiim 507 . . . . . 6 (𝐹 defAt 𝐴 → ((𝐹''''𝐴) = 𝑥𝐴𝐹𝑥))
1110adantr 483 . . . . 5 ((𝐹 defAt 𝐴𝐵𝑊) → ((𝐹''''𝐴) = 𝑥𝐴𝐹𝑥))
123, 7, 11vtocld 3559 . . . 4 ((𝐹 defAt 𝐴𝐵𝑊) → ((𝐹''''𝐴) = (𝐹''''𝐴) ↔ 𝐴𝐹(𝐹''''𝐴)))
131, 12mpbii 235 . . 3 ((𝐹 defAt 𝐴𝐵𝑊) → 𝐴𝐹(𝐹''''𝐴))
14 breq2 5073 . . 3 ((𝐹''''𝐴) = 𝐵 → (𝐴𝐹(𝐹''''𝐴) ↔ 𝐴𝐹𝐵))
1513, 14syl5ibcom 247 . 2 ((𝐹 defAt 𝐴𝐵𝑊) → ((𝐹''''𝐴) = 𝐵𝐴𝐹𝐵))
16 df-dfat 43325 . . . 4 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
17 simpll 765 . . . . 5 (((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐵𝑊) → 𝐴 ∈ dom 𝐹)
18 simpr 487 . . . . 5 (((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐵𝑊) → 𝐵𝑊)
19 simpr 487 . . . . . 6 ((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) → Fun (𝐹 ↾ {𝐴}))
2019adantr 483 . . . . 5 (((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐵𝑊) → Fun (𝐹 ↾ {𝐴}))
2117, 18, 20jca31 517 . . . 4 (((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ∧ 𝐵𝑊) → ((𝐴 ∈ dom 𝐹𝐵𝑊) ∧ Fun (𝐹 ↾ {𝐴})))
2216, 21sylanb 583 . . 3 ((𝐹 defAt 𝐴𝐵𝑊) → ((𝐴 ∈ dom 𝐹𝐵𝑊) ∧ Fun (𝐹 ↾ {𝐴})))
23 funressnbrafv2 43450 . . 3 (((𝐴 ∈ dom 𝐹𝐵𝑊) ∧ Fun (𝐹 ↾ {𝐴})) → (𝐴𝐹𝐵 → (𝐹''''𝐴) = 𝐵))
2422, 23syl 17 . 2 ((𝐹 defAt 𝐴𝐵𝑊) → (𝐴𝐹𝐵 → (𝐹''''𝐴) = 𝐵))
2515, 24impbid 214 1 ((𝐹 defAt 𝐴𝐵𝑊) → ((𝐹''''𝐴) = 𝐵𝐴𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  ∃!weu 2652  Vcvv 3497  {csn 4570   class class class wbr 5069  dom cdm 5558  cres 5560  Fun wfun 6352   defAt wdfat 43322  ''''cafv2 43414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-res 5570  df-iota 6317  df-fun 6360  df-fn 6361  df-dfat 43325  df-afv2 43415
This theorem is referenced by:  dfatopafv2b  43452  dfatsnafv2  43458  dfatcolem  43461
  Copyright terms: Public domain W3C validator