Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmatfval Structured version   Visualization version   GIF version

Theorem lmatfval 31666
Description: Entries of a literal matrix. (Contributed by Thierry Arnoux, 28-Aug-2020.)
Hypotheses
Ref Expression
lmatfval.m 𝑀 = (litMat‘𝑊)
lmatfval.n (𝜑𝑁 ∈ ℕ)
lmatfval.w (𝜑𝑊 ∈ Word Word 𝑉)
lmatfval.1 (𝜑 → (♯‘𝑊) = 𝑁)
lmatfval.2 ((𝜑𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊𝑖)) = 𝑁)
lmatfval.i (𝜑𝐼 ∈ (1...𝑁))
lmatfval.j (𝜑𝐽 ∈ (1...𝑁))
Assertion
Ref Expression
lmatfval (𝜑 → (𝐼𝑀𝐽) = ((𝑊‘(𝐼 − 1))‘(𝐽 − 1)))
Distinct variable groups:   𝑖,𝑀   𝑖,𝐼   𝑖,𝐽   𝑖,𝑁   𝑖,𝑊   𝜑,𝑖
Allowed substitution hint:   𝑉(𝑖)

Proof of Theorem lmatfval
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 lmatfval.m . . 3 𝑀 = (litMat‘𝑊)
2 lmatfval.w . . . 4 (𝜑𝑊 ∈ Word Word 𝑉)
3 lmatval 31665 . . . 4 (𝑊 ∈ Word Word 𝑉 → (litMat‘𝑊) = (𝑖 ∈ (1...(♯‘𝑊)), 𝑗 ∈ (1...(♯‘(𝑊‘0))) ↦ ((𝑊‘(𝑖 − 1))‘(𝑗 − 1))))
42, 3syl 17 . . 3 (𝜑 → (litMat‘𝑊) = (𝑖 ∈ (1...(♯‘𝑊)), 𝑗 ∈ (1...(♯‘(𝑊‘0))) ↦ ((𝑊‘(𝑖 − 1))‘(𝑗 − 1))))
51, 4syl5eq 2791 . 2 (𝜑𝑀 = (𝑖 ∈ (1...(♯‘𝑊)), 𝑗 ∈ (1...(♯‘(𝑊‘0))) ↦ ((𝑊‘(𝑖 − 1))‘(𝑗 − 1))))
6 simprl 767 . . . 4 ((𝜑 ∧ (𝑖 = 𝐼𝑗 = 𝐽)) → 𝑖 = 𝐼)
76fvoveq1d 7277 . . 3 ((𝜑 ∧ (𝑖 = 𝐼𝑗 = 𝐽)) → (𝑊‘(𝑖 − 1)) = (𝑊‘(𝐼 − 1)))
8 simprr 769 . . . 4 ((𝜑 ∧ (𝑖 = 𝐼𝑗 = 𝐽)) → 𝑗 = 𝐽)
98oveq1d 7270 . . 3 ((𝜑 ∧ (𝑖 = 𝐼𝑗 = 𝐽)) → (𝑗 − 1) = (𝐽 − 1))
107, 9fveq12d 6763 . 2 ((𝜑 ∧ (𝑖 = 𝐼𝑗 = 𝐽)) → ((𝑊‘(𝑖 − 1))‘(𝑗 − 1)) = ((𝑊‘(𝐼 − 1))‘(𝐽 − 1)))
11 lmatfval.i . . 3 (𝜑𝐼 ∈ (1...𝑁))
12 lmatfval.1 . . . 4 (𝜑 → (♯‘𝑊) = 𝑁)
1312oveq2d 7271 . . 3 (𝜑 → (1...(♯‘𝑊)) = (1...𝑁))
1411, 13eleqtrrd 2842 . 2 (𝜑𝐼 ∈ (1...(♯‘𝑊)))
15 lmatfval.j . . 3 (𝜑𝐽 ∈ (1...𝑁))
16 1m1e0 11975 . . . . . 6 (1 − 1) = 0
17 lmatfval.n . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
18 nnuz 12550 . . . . . . . . 9 ℕ = (ℤ‘1)
1917, 18eleqtrdi 2849 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ‘1))
20 eluzfz1 13192 . . . . . . . 8 (𝑁 ∈ (ℤ‘1) → 1 ∈ (1...𝑁))
2119, 20syl 17 . . . . . . 7 (𝜑 → 1 ∈ (1...𝑁))
22 fz1fzo0m1 13363 . . . . . . 7 (1 ∈ (1...𝑁) → (1 − 1) ∈ (0..^𝑁))
2321, 22syl 17 . . . . . 6 (𝜑 → (1 − 1) ∈ (0..^𝑁))
2416, 23eqeltrrid 2844 . . . . 5 (𝜑 → 0 ∈ (0..^𝑁))
25 simpr 484 . . . . . . . 8 ((𝜑𝑖 = 0) → 𝑖 = 0)
2625eleq1d 2823 . . . . . . 7 ((𝜑𝑖 = 0) → (𝑖 ∈ (0..^𝑁) ↔ 0 ∈ (0..^𝑁)))
2725fveq2d 6760 . . . . . . . 8 ((𝜑𝑖 = 0) → (𝑊𝑖) = (𝑊‘0))
2827fveqeq2d 6764 . . . . . . 7 ((𝜑𝑖 = 0) → ((♯‘(𝑊𝑖)) = 𝑁 ↔ (♯‘(𝑊‘0)) = 𝑁))
2926, 28imbi12d 344 . . . . . 6 ((𝜑𝑖 = 0) → ((𝑖 ∈ (0..^𝑁) → (♯‘(𝑊𝑖)) = 𝑁) ↔ (0 ∈ (0..^𝑁) → (♯‘(𝑊‘0)) = 𝑁)))
30 lmatfval.2 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊𝑖)) = 𝑁)
3130ex 412 . . . . . 6 (𝜑 → (𝑖 ∈ (0..^𝑁) → (♯‘(𝑊𝑖)) = 𝑁))
3224, 29, 31vtocld 3484 . . . . 5 (𝜑 → (0 ∈ (0..^𝑁) → (♯‘(𝑊‘0)) = 𝑁))
3324, 32mpd 15 . . . 4 (𝜑 → (♯‘(𝑊‘0)) = 𝑁)
3433oveq2d 7271 . . 3 (𝜑 → (1...(♯‘(𝑊‘0))) = (1...𝑁))
3515, 34eleqtrrd 2842 . 2 (𝜑𝐽 ∈ (1...(♯‘(𝑊‘0))))
36 fz1fzo0m1 13363 . . . . . 6 (𝐼 ∈ (1...𝑁) → (𝐼 − 1) ∈ (0..^𝑁))
3711, 36syl 17 . . . . 5 (𝜑 → (𝐼 − 1) ∈ (0..^𝑁))
3812oveq2d 7271 . . . . 5 (𝜑 → (0..^(♯‘𝑊)) = (0..^𝑁))
3937, 38eleqtrrd 2842 . . . 4 (𝜑 → (𝐼 − 1) ∈ (0..^(♯‘𝑊)))
40 wrdsymbcl 14158 . . . 4 ((𝑊 ∈ Word Word 𝑉 ∧ (𝐼 − 1) ∈ (0..^(♯‘𝑊))) → (𝑊‘(𝐼 − 1)) ∈ Word 𝑉)
412, 39, 40syl2anc 583 . . 3 (𝜑 → (𝑊‘(𝐼 − 1)) ∈ Word 𝑉)
42 fz1fzo0m1 13363 . . . . 5 (𝐽 ∈ (1...𝑁) → (𝐽 − 1) ∈ (0..^𝑁))
4315, 42syl 17 . . . 4 (𝜑 → (𝐽 − 1) ∈ (0..^𝑁))
44 simpr 484 . . . . . . . . 9 ((𝜑𝑖 = (𝐼 − 1)) → 𝑖 = (𝐼 − 1))
4544eleq1d 2823 . . . . . . . 8 ((𝜑𝑖 = (𝐼 − 1)) → (𝑖 ∈ (0..^𝑁) ↔ (𝐼 − 1) ∈ (0..^𝑁)))
4644fveq2d 6760 . . . . . . . . 9 ((𝜑𝑖 = (𝐼 − 1)) → (𝑊𝑖) = (𝑊‘(𝐼 − 1)))
4746fveqeq2d 6764 . . . . . . . 8 ((𝜑𝑖 = (𝐼 − 1)) → ((♯‘(𝑊𝑖)) = 𝑁 ↔ (♯‘(𝑊‘(𝐼 − 1))) = 𝑁))
4845, 47imbi12d 344 . . . . . . 7 ((𝜑𝑖 = (𝐼 − 1)) → ((𝑖 ∈ (0..^𝑁) → (♯‘(𝑊𝑖)) = 𝑁) ↔ ((𝐼 − 1) ∈ (0..^𝑁) → (♯‘(𝑊‘(𝐼 − 1))) = 𝑁)))
4937, 48, 31vtocld 3484 . . . . . 6 (𝜑 → ((𝐼 − 1) ∈ (0..^𝑁) → (♯‘(𝑊‘(𝐼 − 1))) = 𝑁))
5037, 49mpd 15 . . . . 5 (𝜑 → (♯‘(𝑊‘(𝐼 − 1))) = 𝑁)
5150oveq2d 7271 . . . 4 (𝜑 → (0..^(♯‘(𝑊‘(𝐼 − 1)))) = (0..^𝑁))
5243, 51eleqtrrd 2842 . . 3 (𝜑 → (𝐽 − 1) ∈ (0..^(♯‘(𝑊‘(𝐼 − 1)))))
53 wrdsymbcl 14158 . . 3 (((𝑊‘(𝐼 − 1)) ∈ Word 𝑉 ∧ (𝐽 − 1) ∈ (0..^(♯‘(𝑊‘(𝐼 − 1))))) → ((𝑊‘(𝐼 − 1))‘(𝐽 − 1)) ∈ 𝑉)
5441, 52, 53syl2anc 583 . 2 (𝜑 → ((𝑊‘(𝐼 − 1))‘(𝐽 − 1)) ∈ 𝑉)
555, 10, 14, 35, 54ovmpod 7403 1 (𝜑 → (𝐼𝑀𝐽) = ((𝑊‘(𝐼 − 1))‘(𝐽 − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  cmpo 7257  0cc0 10802  1c1 10803  cmin 11135  cn 11903  cuz 12511  ...cfz 13168  ..^cfzo 13311  chash 13972  Word cword 14145  litMatclmat 31663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-lmat 31664
This theorem is referenced by:  lmatfvlem  31667  lmat22e11  31670
  Copyright terms: Public domain W3C validator