Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmatfval Structured version   Visualization version   GIF version

Theorem lmatfval 31336
Description: Entries of a literal matrix. (Contributed by Thierry Arnoux, 28-Aug-2020.)
Hypotheses
Ref Expression
lmatfval.m 𝑀 = (litMat‘𝑊)
lmatfval.n (𝜑𝑁 ∈ ℕ)
lmatfval.w (𝜑𝑊 ∈ Word Word 𝑉)
lmatfval.1 (𝜑 → (♯‘𝑊) = 𝑁)
lmatfval.2 ((𝜑𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊𝑖)) = 𝑁)
lmatfval.i (𝜑𝐼 ∈ (1...𝑁))
lmatfval.j (𝜑𝐽 ∈ (1...𝑁))
Assertion
Ref Expression
lmatfval (𝜑 → (𝐼𝑀𝐽) = ((𝑊‘(𝐼 − 1))‘(𝐽 − 1)))
Distinct variable groups:   𝑖,𝑀   𝑖,𝐼   𝑖,𝐽   𝑖,𝑁   𝑖,𝑊   𝜑,𝑖
Allowed substitution hint:   𝑉(𝑖)

Proof of Theorem lmatfval
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 lmatfval.m . . 3 𝑀 = (litMat‘𝑊)
2 lmatfval.w . . . 4 (𝜑𝑊 ∈ Word Word 𝑉)
3 lmatval 31335 . . . 4 (𝑊 ∈ Word Word 𝑉 → (litMat‘𝑊) = (𝑖 ∈ (1...(♯‘𝑊)), 𝑗 ∈ (1...(♯‘(𝑊‘0))) ↦ ((𝑊‘(𝑖 − 1))‘(𝑗 − 1))))
42, 3syl 17 . . 3 (𝜑 → (litMat‘𝑊) = (𝑖 ∈ (1...(♯‘𝑊)), 𝑗 ∈ (1...(♯‘(𝑊‘0))) ↦ ((𝑊‘(𝑖 − 1))‘(𝑗 − 1))))
51, 4syl5eq 2785 . 2 (𝜑𝑀 = (𝑖 ∈ (1...(♯‘𝑊)), 𝑗 ∈ (1...(♯‘(𝑊‘0))) ↦ ((𝑊‘(𝑖 − 1))‘(𝑗 − 1))))
6 simprl 771 . . . 4 ((𝜑 ∧ (𝑖 = 𝐼𝑗 = 𝐽)) → 𝑖 = 𝐼)
76fvoveq1d 7192 . . 3 ((𝜑 ∧ (𝑖 = 𝐼𝑗 = 𝐽)) → (𝑊‘(𝑖 − 1)) = (𝑊‘(𝐼 − 1)))
8 simprr 773 . . . 4 ((𝜑 ∧ (𝑖 = 𝐼𝑗 = 𝐽)) → 𝑗 = 𝐽)
98oveq1d 7185 . . 3 ((𝜑 ∧ (𝑖 = 𝐼𝑗 = 𝐽)) → (𝑗 − 1) = (𝐽 − 1))
107, 9fveq12d 6681 . 2 ((𝜑 ∧ (𝑖 = 𝐼𝑗 = 𝐽)) → ((𝑊‘(𝑖 − 1))‘(𝑗 − 1)) = ((𝑊‘(𝐼 − 1))‘(𝐽 − 1)))
11 lmatfval.i . . 3 (𝜑𝐼 ∈ (1...𝑁))
12 lmatfval.1 . . . 4 (𝜑 → (♯‘𝑊) = 𝑁)
1312oveq2d 7186 . . 3 (𝜑 → (1...(♯‘𝑊)) = (1...𝑁))
1411, 13eleqtrrd 2836 . 2 (𝜑𝐼 ∈ (1...(♯‘𝑊)))
15 lmatfval.j . . 3 (𝜑𝐽 ∈ (1...𝑁))
16 1m1e0 11788 . . . . . 6 (1 − 1) = 0
17 lmatfval.n . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
18 nnuz 12363 . . . . . . . . 9 ℕ = (ℤ‘1)
1917, 18eleqtrdi 2843 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ‘1))
20 eluzfz1 13005 . . . . . . . 8 (𝑁 ∈ (ℤ‘1) → 1 ∈ (1...𝑁))
2119, 20syl 17 . . . . . . 7 (𝜑 → 1 ∈ (1...𝑁))
22 fz1fzo0m1 13176 . . . . . . 7 (1 ∈ (1...𝑁) → (1 − 1) ∈ (0..^𝑁))
2321, 22syl 17 . . . . . 6 (𝜑 → (1 − 1) ∈ (0..^𝑁))
2416, 23eqeltrrid 2838 . . . . 5 (𝜑 → 0 ∈ (0..^𝑁))
25 simpr 488 . . . . . . . 8 ((𝜑𝑖 = 0) → 𝑖 = 0)
2625eleq1d 2817 . . . . . . 7 ((𝜑𝑖 = 0) → (𝑖 ∈ (0..^𝑁) ↔ 0 ∈ (0..^𝑁)))
2725fveq2d 6678 . . . . . . . 8 ((𝜑𝑖 = 0) → (𝑊𝑖) = (𝑊‘0))
2827fveqeq2d 6682 . . . . . . 7 ((𝜑𝑖 = 0) → ((♯‘(𝑊𝑖)) = 𝑁 ↔ (♯‘(𝑊‘0)) = 𝑁))
2926, 28imbi12d 348 . . . . . 6 ((𝜑𝑖 = 0) → ((𝑖 ∈ (0..^𝑁) → (♯‘(𝑊𝑖)) = 𝑁) ↔ (0 ∈ (0..^𝑁) → (♯‘(𝑊‘0)) = 𝑁)))
30 lmatfval.2 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊𝑖)) = 𝑁)
3130ex 416 . . . . . 6 (𝜑 → (𝑖 ∈ (0..^𝑁) → (♯‘(𝑊𝑖)) = 𝑁))
3224, 29, 31vtocld 3459 . . . . 5 (𝜑 → (0 ∈ (0..^𝑁) → (♯‘(𝑊‘0)) = 𝑁))
3324, 32mpd 15 . . . 4 (𝜑 → (♯‘(𝑊‘0)) = 𝑁)
3433oveq2d 7186 . . 3 (𝜑 → (1...(♯‘(𝑊‘0))) = (1...𝑁))
3515, 34eleqtrrd 2836 . 2 (𝜑𝐽 ∈ (1...(♯‘(𝑊‘0))))
36 fz1fzo0m1 13176 . . . . . 6 (𝐼 ∈ (1...𝑁) → (𝐼 − 1) ∈ (0..^𝑁))
3711, 36syl 17 . . . . 5 (𝜑 → (𝐼 − 1) ∈ (0..^𝑁))
3812oveq2d 7186 . . . . 5 (𝜑 → (0..^(♯‘𝑊)) = (0..^𝑁))
3937, 38eleqtrrd 2836 . . . 4 (𝜑 → (𝐼 − 1) ∈ (0..^(♯‘𝑊)))
40 wrdsymbcl 13968 . . . 4 ((𝑊 ∈ Word Word 𝑉 ∧ (𝐼 − 1) ∈ (0..^(♯‘𝑊))) → (𝑊‘(𝐼 − 1)) ∈ Word 𝑉)
412, 39, 40syl2anc 587 . . 3 (𝜑 → (𝑊‘(𝐼 − 1)) ∈ Word 𝑉)
42 fz1fzo0m1 13176 . . . . 5 (𝐽 ∈ (1...𝑁) → (𝐽 − 1) ∈ (0..^𝑁))
4315, 42syl 17 . . . 4 (𝜑 → (𝐽 − 1) ∈ (0..^𝑁))
44 simpr 488 . . . . . . . . 9 ((𝜑𝑖 = (𝐼 − 1)) → 𝑖 = (𝐼 − 1))
4544eleq1d 2817 . . . . . . . 8 ((𝜑𝑖 = (𝐼 − 1)) → (𝑖 ∈ (0..^𝑁) ↔ (𝐼 − 1) ∈ (0..^𝑁)))
4644fveq2d 6678 . . . . . . . . 9 ((𝜑𝑖 = (𝐼 − 1)) → (𝑊𝑖) = (𝑊‘(𝐼 − 1)))
4746fveqeq2d 6682 . . . . . . . 8 ((𝜑𝑖 = (𝐼 − 1)) → ((♯‘(𝑊𝑖)) = 𝑁 ↔ (♯‘(𝑊‘(𝐼 − 1))) = 𝑁))
4845, 47imbi12d 348 . . . . . . 7 ((𝜑𝑖 = (𝐼 − 1)) → ((𝑖 ∈ (0..^𝑁) → (♯‘(𝑊𝑖)) = 𝑁) ↔ ((𝐼 − 1) ∈ (0..^𝑁) → (♯‘(𝑊‘(𝐼 − 1))) = 𝑁)))
4937, 48, 31vtocld 3459 . . . . . 6 (𝜑 → ((𝐼 − 1) ∈ (0..^𝑁) → (♯‘(𝑊‘(𝐼 − 1))) = 𝑁))
5037, 49mpd 15 . . . . 5 (𝜑 → (♯‘(𝑊‘(𝐼 − 1))) = 𝑁)
5150oveq2d 7186 . . . 4 (𝜑 → (0..^(♯‘(𝑊‘(𝐼 − 1)))) = (0..^𝑁))
5243, 51eleqtrrd 2836 . . 3 (𝜑 → (𝐽 − 1) ∈ (0..^(♯‘(𝑊‘(𝐼 − 1)))))
53 wrdsymbcl 13968 . . 3 (((𝑊‘(𝐼 − 1)) ∈ Word 𝑉 ∧ (𝐽 − 1) ∈ (0..^(♯‘(𝑊‘(𝐼 − 1))))) → ((𝑊‘(𝐼 − 1))‘(𝐽 − 1)) ∈ 𝑉)
5441, 52, 53syl2anc 587 . 2 (𝜑 → ((𝑊‘(𝐼 − 1))‘(𝐽 − 1)) ∈ 𝑉)
555, 10, 14, 35, 54ovmpod 7317 1 (𝜑 → (𝐼𝑀𝐽) = ((𝑊‘(𝐼 − 1))‘(𝐽 − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2114  cfv 6339  (class class class)co 7170  cmpo 7172  0cc0 10615  1c1 10616  cmin 10948  cn 11716  cuz 12324  ...cfz 12981  ..^cfzo 13124  chash 13782  Word cword 13955  litMatclmat 31333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-er 8320  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-card 9441  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-nn 11717  df-n0 11977  df-z 12063  df-uz 12325  df-fz 12982  df-fzo 13125  df-hash 13783  df-word 13956  df-lmat 31334
This theorem is referenced by:  lmatfvlem  31337  lmat22e11  31340
  Copyright terms: Public domain W3C validator