Step | Hyp | Ref
| Expression |
1 | | lmatfval.m |
. . 3
⊢ 𝑀 = (litMat‘𝑊) |
2 | | lmatfval.w |
. . . 4
⊢ (𝜑 → 𝑊 ∈ Word Word 𝑉) |
3 | | lmatval 31665 |
. . . 4
⊢ (𝑊 ∈ Word Word 𝑉 → (litMat‘𝑊) = (𝑖 ∈ (1...(♯‘𝑊)), 𝑗 ∈ (1...(♯‘(𝑊‘0))) ↦ ((𝑊‘(𝑖 − 1))‘(𝑗 − 1)))) |
4 | 2, 3 | syl 17 |
. . 3
⊢ (𝜑 → (litMat‘𝑊) = (𝑖 ∈ (1...(♯‘𝑊)), 𝑗 ∈ (1...(♯‘(𝑊‘0))) ↦ ((𝑊‘(𝑖 − 1))‘(𝑗 − 1)))) |
5 | 1, 4 | syl5eq 2791 |
. 2
⊢ (𝜑 → 𝑀 = (𝑖 ∈ (1...(♯‘𝑊)), 𝑗 ∈ (1...(♯‘(𝑊‘0))) ↦ ((𝑊‘(𝑖 − 1))‘(𝑗 − 1)))) |
6 | | simprl 767 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑗 = 𝐽)) → 𝑖 = 𝐼) |
7 | 6 | fvoveq1d 7277 |
. . 3
⊢ ((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑗 = 𝐽)) → (𝑊‘(𝑖 − 1)) = (𝑊‘(𝐼 − 1))) |
8 | | simprr 769 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑗 = 𝐽)) → 𝑗 = 𝐽) |
9 | 8 | oveq1d 7270 |
. . 3
⊢ ((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑗 = 𝐽)) → (𝑗 − 1) = (𝐽 − 1)) |
10 | 7, 9 | fveq12d 6763 |
. 2
⊢ ((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑗 = 𝐽)) → ((𝑊‘(𝑖 − 1))‘(𝑗 − 1)) = ((𝑊‘(𝐼 − 1))‘(𝐽 − 1))) |
11 | | lmatfval.i |
. . 3
⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) |
12 | | lmatfval.1 |
. . . 4
⊢ (𝜑 → (♯‘𝑊) = 𝑁) |
13 | 12 | oveq2d 7271 |
. . 3
⊢ (𝜑 → (1...(♯‘𝑊)) = (1...𝑁)) |
14 | 11, 13 | eleqtrrd 2842 |
. 2
⊢ (𝜑 → 𝐼 ∈ (1...(♯‘𝑊))) |
15 | | lmatfval.j |
. . 3
⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) |
16 | | 1m1e0 11975 |
. . . . . 6
⊢ (1
− 1) = 0 |
17 | | lmatfval.n |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ ℕ) |
18 | | nnuz 12550 |
. . . . . . . . 9
⊢ ℕ =
(ℤ≥‘1) |
19 | 17, 18 | eleqtrdi 2849 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘1)) |
20 | | eluzfz1 13192 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘1) → 1 ∈ (1...𝑁)) |
21 | 19, 20 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 1 ∈ (1...𝑁)) |
22 | | fz1fzo0m1 13363 |
. . . . . . 7
⊢ (1 ∈
(1...𝑁) → (1 −
1) ∈ (0..^𝑁)) |
23 | 21, 22 | syl 17 |
. . . . . 6
⊢ (𝜑 → (1 − 1) ∈
(0..^𝑁)) |
24 | 16, 23 | eqeltrrid 2844 |
. . . . 5
⊢ (𝜑 → 0 ∈ (0..^𝑁)) |
25 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 = 0) → 𝑖 = 0) |
26 | 25 | eleq1d 2823 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 0) → (𝑖 ∈ (0..^𝑁) ↔ 0 ∈ (0..^𝑁))) |
27 | 25 | fveq2d 6760 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 = 0) → (𝑊‘𝑖) = (𝑊‘0)) |
28 | 27 | fveqeq2d 6764 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 0) → ((♯‘(𝑊‘𝑖)) = 𝑁 ↔ (♯‘(𝑊‘0)) = 𝑁)) |
29 | 26, 28 | imbi12d 344 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 = 0) → ((𝑖 ∈ (0..^𝑁) → (♯‘(𝑊‘𝑖)) = 𝑁) ↔ (0 ∈ (0..^𝑁) → (♯‘(𝑊‘0)) = 𝑁))) |
30 | | lmatfval.2 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊‘𝑖)) = 𝑁) |
31 | 30 | ex 412 |
. . . . . 6
⊢ (𝜑 → (𝑖 ∈ (0..^𝑁) → (♯‘(𝑊‘𝑖)) = 𝑁)) |
32 | 24, 29, 31 | vtocld 3484 |
. . . . 5
⊢ (𝜑 → (0 ∈ (0..^𝑁) → (♯‘(𝑊‘0)) = 𝑁)) |
33 | 24, 32 | mpd 15 |
. . . 4
⊢ (𝜑 → (♯‘(𝑊‘0)) = 𝑁) |
34 | 33 | oveq2d 7271 |
. . 3
⊢ (𝜑 → (1...(♯‘(𝑊‘0))) = (1...𝑁)) |
35 | 15, 34 | eleqtrrd 2842 |
. 2
⊢ (𝜑 → 𝐽 ∈ (1...(♯‘(𝑊‘0)))) |
36 | | fz1fzo0m1 13363 |
. . . . . 6
⊢ (𝐼 ∈ (1...𝑁) → (𝐼 − 1) ∈ (0..^𝑁)) |
37 | 11, 36 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐼 − 1) ∈ (0..^𝑁)) |
38 | 12 | oveq2d 7271 |
. . . . 5
⊢ (𝜑 → (0..^(♯‘𝑊)) = (0..^𝑁)) |
39 | 37, 38 | eleqtrrd 2842 |
. . . 4
⊢ (𝜑 → (𝐼 − 1) ∈ (0..^(♯‘𝑊))) |
40 | | wrdsymbcl 14158 |
. . . 4
⊢ ((𝑊 ∈ Word Word 𝑉 ∧ (𝐼 − 1) ∈ (0..^(♯‘𝑊))) → (𝑊‘(𝐼 − 1)) ∈ Word 𝑉) |
41 | 2, 39, 40 | syl2anc 583 |
. . 3
⊢ (𝜑 → (𝑊‘(𝐼 − 1)) ∈ Word 𝑉) |
42 | | fz1fzo0m1 13363 |
. . . . 5
⊢ (𝐽 ∈ (1...𝑁) → (𝐽 − 1) ∈ (0..^𝑁)) |
43 | 15, 42 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐽 − 1) ∈ (0..^𝑁)) |
44 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 = (𝐼 − 1)) → 𝑖 = (𝐼 − 1)) |
45 | 44 | eleq1d 2823 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 = (𝐼 − 1)) → (𝑖 ∈ (0..^𝑁) ↔ (𝐼 − 1) ∈ (0..^𝑁))) |
46 | 44 | fveq2d 6760 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 = (𝐼 − 1)) → (𝑊‘𝑖) = (𝑊‘(𝐼 − 1))) |
47 | 46 | fveqeq2d 6764 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 = (𝐼 − 1)) → ((♯‘(𝑊‘𝑖)) = 𝑁 ↔ (♯‘(𝑊‘(𝐼 − 1))) = 𝑁)) |
48 | 45, 47 | imbi12d 344 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = (𝐼 − 1)) → ((𝑖 ∈ (0..^𝑁) → (♯‘(𝑊‘𝑖)) = 𝑁) ↔ ((𝐼 − 1) ∈ (0..^𝑁) → (♯‘(𝑊‘(𝐼 − 1))) = 𝑁))) |
49 | 37, 48, 31 | vtocld 3484 |
. . . . . 6
⊢ (𝜑 → ((𝐼 − 1) ∈ (0..^𝑁) → (♯‘(𝑊‘(𝐼 − 1))) = 𝑁)) |
50 | 37, 49 | mpd 15 |
. . . . 5
⊢ (𝜑 → (♯‘(𝑊‘(𝐼 − 1))) = 𝑁) |
51 | 50 | oveq2d 7271 |
. . . 4
⊢ (𝜑 → (0..^(♯‘(𝑊‘(𝐼 − 1)))) = (0..^𝑁)) |
52 | 43, 51 | eleqtrrd 2842 |
. . 3
⊢ (𝜑 → (𝐽 − 1) ∈
(0..^(♯‘(𝑊‘(𝐼 − 1))))) |
53 | | wrdsymbcl 14158 |
. . 3
⊢ (((𝑊‘(𝐼 − 1)) ∈ Word 𝑉 ∧ (𝐽 − 1) ∈
(0..^(♯‘(𝑊‘(𝐼 − 1))))) → ((𝑊‘(𝐼 − 1))‘(𝐽 − 1)) ∈ 𝑉) |
54 | 41, 52, 53 | syl2anc 583 |
. 2
⊢ (𝜑 → ((𝑊‘(𝐼 − 1))‘(𝐽 − 1)) ∈ 𝑉) |
55 | 5, 10, 14, 35, 54 | ovmpod 7403 |
1
⊢ (𝜑 → (𝐼𝑀𝐽) = ((𝑊‘(𝐼 − 1))‘(𝐽 − 1))) |