Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmatfval Structured version   Visualization version   GIF version

Theorem lmatfval 33780
Description: Entries of a literal matrix. (Contributed by Thierry Arnoux, 28-Aug-2020.)
Hypotheses
Ref Expression
lmatfval.m 𝑀 = (litMat‘𝑊)
lmatfval.n (𝜑𝑁 ∈ ℕ)
lmatfval.w (𝜑𝑊 ∈ Word Word 𝑉)
lmatfval.1 (𝜑 → (♯‘𝑊) = 𝑁)
lmatfval.2 ((𝜑𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊𝑖)) = 𝑁)
lmatfval.i (𝜑𝐼 ∈ (1...𝑁))
lmatfval.j (𝜑𝐽 ∈ (1...𝑁))
Assertion
Ref Expression
lmatfval (𝜑 → (𝐼𝑀𝐽) = ((𝑊‘(𝐼 − 1))‘(𝐽 − 1)))
Distinct variable groups:   𝑖,𝑀   𝑖,𝐼   𝑖,𝐽   𝑖,𝑁   𝑖,𝑊   𝜑,𝑖
Allowed substitution hint:   𝑉(𝑖)

Proof of Theorem lmatfval
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 lmatfval.m . . 3 𝑀 = (litMat‘𝑊)
2 lmatfval.w . . . 4 (𝜑𝑊 ∈ Word Word 𝑉)
3 lmatval 33779 . . . 4 (𝑊 ∈ Word Word 𝑉 → (litMat‘𝑊) = (𝑖 ∈ (1...(♯‘𝑊)), 𝑗 ∈ (1...(♯‘(𝑊‘0))) ↦ ((𝑊‘(𝑖 − 1))‘(𝑗 − 1))))
42, 3syl 17 . . 3 (𝜑 → (litMat‘𝑊) = (𝑖 ∈ (1...(♯‘𝑊)), 𝑗 ∈ (1...(♯‘(𝑊‘0))) ↦ ((𝑊‘(𝑖 − 1))‘(𝑗 − 1))))
51, 4eqtrid 2776 . 2 (𝜑𝑀 = (𝑖 ∈ (1...(♯‘𝑊)), 𝑗 ∈ (1...(♯‘(𝑊‘0))) ↦ ((𝑊‘(𝑖 − 1))‘(𝑗 − 1))))
6 simprl 770 . . . 4 ((𝜑 ∧ (𝑖 = 𝐼𝑗 = 𝐽)) → 𝑖 = 𝐼)
76fvoveq1d 7375 . . 3 ((𝜑 ∧ (𝑖 = 𝐼𝑗 = 𝐽)) → (𝑊‘(𝑖 − 1)) = (𝑊‘(𝐼 − 1)))
8 simprr 772 . . . 4 ((𝜑 ∧ (𝑖 = 𝐼𝑗 = 𝐽)) → 𝑗 = 𝐽)
98oveq1d 7368 . . 3 ((𝜑 ∧ (𝑖 = 𝐼𝑗 = 𝐽)) → (𝑗 − 1) = (𝐽 − 1))
107, 9fveq12d 6833 . 2 ((𝜑 ∧ (𝑖 = 𝐼𝑗 = 𝐽)) → ((𝑊‘(𝑖 − 1))‘(𝑗 − 1)) = ((𝑊‘(𝐼 − 1))‘(𝐽 − 1)))
11 lmatfval.i . . 3 (𝜑𝐼 ∈ (1...𝑁))
12 lmatfval.1 . . . 4 (𝜑 → (♯‘𝑊) = 𝑁)
1312oveq2d 7369 . . 3 (𝜑 → (1...(♯‘𝑊)) = (1...𝑁))
1411, 13eleqtrrd 2831 . 2 (𝜑𝐼 ∈ (1...(♯‘𝑊)))
15 lmatfval.j . . 3 (𝜑𝐽 ∈ (1...𝑁))
16 1m1e0 12218 . . . . . 6 (1 − 1) = 0
17 lmatfval.n . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
18 nnuz 12796 . . . . . . . . 9 ℕ = (ℤ‘1)
1917, 18eleqtrdi 2838 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ‘1))
20 eluzfz1 13452 . . . . . . . 8 (𝑁 ∈ (ℤ‘1) → 1 ∈ (1...𝑁))
2119, 20syl 17 . . . . . . 7 (𝜑 → 1 ∈ (1...𝑁))
22 fz1fzo0m1 13631 . . . . . . 7 (1 ∈ (1...𝑁) → (1 − 1) ∈ (0..^𝑁))
2321, 22syl 17 . . . . . 6 (𝜑 → (1 − 1) ∈ (0..^𝑁))
2416, 23eqeltrrid 2833 . . . . 5 (𝜑 → 0 ∈ (0..^𝑁))
25 simpr 484 . . . . . . . 8 ((𝜑𝑖 = 0) → 𝑖 = 0)
2625eleq1d 2813 . . . . . . 7 ((𝜑𝑖 = 0) → (𝑖 ∈ (0..^𝑁) ↔ 0 ∈ (0..^𝑁)))
2725fveq2d 6830 . . . . . . . 8 ((𝜑𝑖 = 0) → (𝑊𝑖) = (𝑊‘0))
2827fveqeq2d 6834 . . . . . . 7 ((𝜑𝑖 = 0) → ((♯‘(𝑊𝑖)) = 𝑁 ↔ (♯‘(𝑊‘0)) = 𝑁))
2926, 28imbi12d 344 . . . . . 6 ((𝜑𝑖 = 0) → ((𝑖 ∈ (0..^𝑁) → (♯‘(𝑊𝑖)) = 𝑁) ↔ (0 ∈ (0..^𝑁) → (♯‘(𝑊‘0)) = 𝑁)))
30 lmatfval.2 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊𝑖)) = 𝑁)
3130ex 412 . . . . . 6 (𝜑 → (𝑖 ∈ (0..^𝑁) → (♯‘(𝑊𝑖)) = 𝑁))
3224, 29, 31vtocld 3518 . . . . 5 (𝜑 → (0 ∈ (0..^𝑁) → (♯‘(𝑊‘0)) = 𝑁))
3324, 32mpd 15 . . . 4 (𝜑 → (♯‘(𝑊‘0)) = 𝑁)
3433oveq2d 7369 . . 3 (𝜑 → (1...(♯‘(𝑊‘0))) = (1...𝑁))
3515, 34eleqtrrd 2831 . 2 (𝜑𝐽 ∈ (1...(♯‘(𝑊‘0))))
36 fz1fzo0m1 13631 . . . . . 6 (𝐼 ∈ (1...𝑁) → (𝐼 − 1) ∈ (0..^𝑁))
3711, 36syl 17 . . . . 5 (𝜑 → (𝐼 − 1) ∈ (0..^𝑁))
3812oveq2d 7369 . . . . 5 (𝜑 → (0..^(♯‘𝑊)) = (0..^𝑁))
3937, 38eleqtrrd 2831 . . . 4 (𝜑 → (𝐼 − 1) ∈ (0..^(♯‘𝑊)))
40 wrdsymbcl 14452 . . . 4 ((𝑊 ∈ Word Word 𝑉 ∧ (𝐼 − 1) ∈ (0..^(♯‘𝑊))) → (𝑊‘(𝐼 − 1)) ∈ Word 𝑉)
412, 39, 40syl2anc 584 . . 3 (𝜑 → (𝑊‘(𝐼 − 1)) ∈ Word 𝑉)
42 fz1fzo0m1 13631 . . . . 5 (𝐽 ∈ (1...𝑁) → (𝐽 − 1) ∈ (0..^𝑁))
4315, 42syl 17 . . . 4 (𝜑 → (𝐽 − 1) ∈ (0..^𝑁))
44 simpr 484 . . . . . . . . 9 ((𝜑𝑖 = (𝐼 − 1)) → 𝑖 = (𝐼 − 1))
4544eleq1d 2813 . . . . . . . 8 ((𝜑𝑖 = (𝐼 − 1)) → (𝑖 ∈ (0..^𝑁) ↔ (𝐼 − 1) ∈ (0..^𝑁)))
4644fveq2d 6830 . . . . . . . . 9 ((𝜑𝑖 = (𝐼 − 1)) → (𝑊𝑖) = (𝑊‘(𝐼 − 1)))
4746fveqeq2d 6834 . . . . . . . 8 ((𝜑𝑖 = (𝐼 − 1)) → ((♯‘(𝑊𝑖)) = 𝑁 ↔ (♯‘(𝑊‘(𝐼 − 1))) = 𝑁))
4845, 47imbi12d 344 . . . . . . 7 ((𝜑𝑖 = (𝐼 − 1)) → ((𝑖 ∈ (0..^𝑁) → (♯‘(𝑊𝑖)) = 𝑁) ↔ ((𝐼 − 1) ∈ (0..^𝑁) → (♯‘(𝑊‘(𝐼 − 1))) = 𝑁)))
4937, 48, 31vtocld 3518 . . . . . 6 (𝜑 → ((𝐼 − 1) ∈ (0..^𝑁) → (♯‘(𝑊‘(𝐼 − 1))) = 𝑁))
5037, 49mpd 15 . . . . 5 (𝜑 → (♯‘(𝑊‘(𝐼 − 1))) = 𝑁)
5150oveq2d 7369 . . . 4 (𝜑 → (0..^(♯‘(𝑊‘(𝐼 − 1)))) = (0..^𝑁))
5243, 51eleqtrrd 2831 . . 3 (𝜑 → (𝐽 − 1) ∈ (0..^(♯‘(𝑊‘(𝐼 − 1)))))
53 wrdsymbcl 14452 . . 3 (((𝑊‘(𝐼 − 1)) ∈ Word 𝑉 ∧ (𝐽 − 1) ∈ (0..^(♯‘(𝑊‘(𝐼 − 1))))) → ((𝑊‘(𝐼 − 1))‘(𝐽 − 1)) ∈ 𝑉)
5441, 52, 53syl2anc 584 . 2 (𝜑 → ((𝑊‘(𝐼 − 1))‘(𝐽 − 1)) ∈ 𝑉)
555, 10, 14, 35, 54ovmpod 7505 1 (𝜑 → (𝐼𝑀𝐽) = ((𝑊‘(𝐼 − 1))‘(𝐽 − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6486  (class class class)co 7353  cmpo 7355  0cc0 11028  1c1 11029  cmin 11365  cn 12146  cuz 12753  ...cfz 13428  ..^cfzo 13575  chash 14255  Word cword 14438  litMatclmat 33777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-hash 14256  df-word 14439  df-lmat 33778
This theorem is referenced by:  lmatfvlem  33781  lmat22e11  33784
  Copyright terms: Public domain W3C validator