Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmatfval Structured version   Visualization version   GIF version

Theorem lmatfval 33845
Description: Entries of a literal matrix. (Contributed by Thierry Arnoux, 28-Aug-2020.)
Hypotheses
Ref Expression
lmatfval.m 𝑀 = (litMat‘𝑊)
lmatfval.n (𝜑𝑁 ∈ ℕ)
lmatfval.w (𝜑𝑊 ∈ Word Word 𝑉)
lmatfval.1 (𝜑 → (♯‘𝑊) = 𝑁)
lmatfval.2 ((𝜑𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊𝑖)) = 𝑁)
lmatfval.i (𝜑𝐼 ∈ (1...𝑁))
lmatfval.j (𝜑𝐽 ∈ (1...𝑁))
Assertion
Ref Expression
lmatfval (𝜑 → (𝐼𝑀𝐽) = ((𝑊‘(𝐼 − 1))‘(𝐽 − 1)))
Distinct variable groups:   𝑖,𝑀   𝑖,𝐼   𝑖,𝐽   𝑖,𝑁   𝑖,𝑊   𝜑,𝑖
Allowed substitution hint:   𝑉(𝑖)

Proof of Theorem lmatfval
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 lmatfval.m . . 3 𝑀 = (litMat‘𝑊)
2 lmatfval.w . . . 4 (𝜑𝑊 ∈ Word Word 𝑉)
3 lmatval 33844 . . . 4 (𝑊 ∈ Word Word 𝑉 → (litMat‘𝑊) = (𝑖 ∈ (1...(♯‘𝑊)), 𝑗 ∈ (1...(♯‘(𝑊‘0))) ↦ ((𝑊‘(𝑖 − 1))‘(𝑗 − 1))))
42, 3syl 17 . . 3 (𝜑 → (litMat‘𝑊) = (𝑖 ∈ (1...(♯‘𝑊)), 𝑗 ∈ (1...(♯‘(𝑊‘0))) ↦ ((𝑊‘(𝑖 − 1))‘(𝑗 − 1))))
51, 4eqtrid 2782 . 2 (𝜑𝑀 = (𝑖 ∈ (1...(♯‘𝑊)), 𝑗 ∈ (1...(♯‘(𝑊‘0))) ↦ ((𝑊‘(𝑖 − 1))‘(𝑗 − 1))))
6 simprl 770 . . . 4 ((𝜑 ∧ (𝑖 = 𝐼𝑗 = 𝐽)) → 𝑖 = 𝐼)
76fvoveq1d 7427 . . 3 ((𝜑 ∧ (𝑖 = 𝐼𝑗 = 𝐽)) → (𝑊‘(𝑖 − 1)) = (𝑊‘(𝐼 − 1)))
8 simprr 772 . . . 4 ((𝜑 ∧ (𝑖 = 𝐼𝑗 = 𝐽)) → 𝑗 = 𝐽)
98oveq1d 7420 . . 3 ((𝜑 ∧ (𝑖 = 𝐼𝑗 = 𝐽)) → (𝑗 − 1) = (𝐽 − 1))
107, 9fveq12d 6883 . 2 ((𝜑 ∧ (𝑖 = 𝐼𝑗 = 𝐽)) → ((𝑊‘(𝑖 − 1))‘(𝑗 − 1)) = ((𝑊‘(𝐼 − 1))‘(𝐽 − 1)))
11 lmatfval.i . . 3 (𝜑𝐼 ∈ (1...𝑁))
12 lmatfval.1 . . . 4 (𝜑 → (♯‘𝑊) = 𝑁)
1312oveq2d 7421 . . 3 (𝜑 → (1...(♯‘𝑊)) = (1...𝑁))
1411, 13eleqtrrd 2837 . 2 (𝜑𝐼 ∈ (1...(♯‘𝑊)))
15 lmatfval.j . . 3 (𝜑𝐽 ∈ (1...𝑁))
16 1m1e0 12312 . . . . . 6 (1 − 1) = 0
17 lmatfval.n . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
18 nnuz 12895 . . . . . . . . 9 ℕ = (ℤ‘1)
1917, 18eleqtrdi 2844 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ‘1))
20 eluzfz1 13548 . . . . . . . 8 (𝑁 ∈ (ℤ‘1) → 1 ∈ (1...𝑁))
2119, 20syl 17 . . . . . . 7 (𝜑 → 1 ∈ (1...𝑁))
22 fz1fzo0m1 13727 . . . . . . 7 (1 ∈ (1...𝑁) → (1 − 1) ∈ (0..^𝑁))
2321, 22syl 17 . . . . . 6 (𝜑 → (1 − 1) ∈ (0..^𝑁))
2416, 23eqeltrrid 2839 . . . . 5 (𝜑 → 0 ∈ (0..^𝑁))
25 simpr 484 . . . . . . . 8 ((𝜑𝑖 = 0) → 𝑖 = 0)
2625eleq1d 2819 . . . . . . 7 ((𝜑𝑖 = 0) → (𝑖 ∈ (0..^𝑁) ↔ 0 ∈ (0..^𝑁)))
2725fveq2d 6880 . . . . . . . 8 ((𝜑𝑖 = 0) → (𝑊𝑖) = (𝑊‘0))
2827fveqeq2d 6884 . . . . . . 7 ((𝜑𝑖 = 0) → ((♯‘(𝑊𝑖)) = 𝑁 ↔ (♯‘(𝑊‘0)) = 𝑁))
2926, 28imbi12d 344 . . . . . 6 ((𝜑𝑖 = 0) → ((𝑖 ∈ (0..^𝑁) → (♯‘(𝑊𝑖)) = 𝑁) ↔ (0 ∈ (0..^𝑁) → (♯‘(𝑊‘0)) = 𝑁)))
30 lmatfval.2 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊𝑖)) = 𝑁)
3130ex 412 . . . . . 6 (𝜑 → (𝑖 ∈ (0..^𝑁) → (♯‘(𝑊𝑖)) = 𝑁))
3224, 29, 31vtocld 3540 . . . . 5 (𝜑 → (0 ∈ (0..^𝑁) → (♯‘(𝑊‘0)) = 𝑁))
3324, 32mpd 15 . . . 4 (𝜑 → (♯‘(𝑊‘0)) = 𝑁)
3433oveq2d 7421 . . 3 (𝜑 → (1...(♯‘(𝑊‘0))) = (1...𝑁))
3515, 34eleqtrrd 2837 . 2 (𝜑𝐽 ∈ (1...(♯‘(𝑊‘0))))
36 fz1fzo0m1 13727 . . . . . 6 (𝐼 ∈ (1...𝑁) → (𝐼 − 1) ∈ (0..^𝑁))
3711, 36syl 17 . . . . 5 (𝜑 → (𝐼 − 1) ∈ (0..^𝑁))
3812oveq2d 7421 . . . . 5 (𝜑 → (0..^(♯‘𝑊)) = (0..^𝑁))
3937, 38eleqtrrd 2837 . . . 4 (𝜑 → (𝐼 − 1) ∈ (0..^(♯‘𝑊)))
40 wrdsymbcl 14545 . . . 4 ((𝑊 ∈ Word Word 𝑉 ∧ (𝐼 − 1) ∈ (0..^(♯‘𝑊))) → (𝑊‘(𝐼 − 1)) ∈ Word 𝑉)
412, 39, 40syl2anc 584 . . 3 (𝜑 → (𝑊‘(𝐼 − 1)) ∈ Word 𝑉)
42 fz1fzo0m1 13727 . . . . 5 (𝐽 ∈ (1...𝑁) → (𝐽 − 1) ∈ (0..^𝑁))
4315, 42syl 17 . . . 4 (𝜑 → (𝐽 − 1) ∈ (0..^𝑁))
44 simpr 484 . . . . . . . . 9 ((𝜑𝑖 = (𝐼 − 1)) → 𝑖 = (𝐼 − 1))
4544eleq1d 2819 . . . . . . . 8 ((𝜑𝑖 = (𝐼 − 1)) → (𝑖 ∈ (0..^𝑁) ↔ (𝐼 − 1) ∈ (0..^𝑁)))
4644fveq2d 6880 . . . . . . . . 9 ((𝜑𝑖 = (𝐼 − 1)) → (𝑊𝑖) = (𝑊‘(𝐼 − 1)))
4746fveqeq2d 6884 . . . . . . . 8 ((𝜑𝑖 = (𝐼 − 1)) → ((♯‘(𝑊𝑖)) = 𝑁 ↔ (♯‘(𝑊‘(𝐼 − 1))) = 𝑁))
4845, 47imbi12d 344 . . . . . . 7 ((𝜑𝑖 = (𝐼 − 1)) → ((𝑖 ∈ (0..^𝑁) → (♯‘(𝑊𝑖)) = 𝑁) ↔ ((𝐼 − 1) ∈ (0..^𝑁) → (♯‘(𝑊‘(𝐼 − 1))) = 𝑁)))
4937, 48, 31vtocld 3540 . . . . . 6 (𝜑 → ((𝐼 − 1) ∈ (0..^𝑁) → (♯‘(𝑊‘(𝐼 − 1))) = 𝑁))
5037, 49mpd 15 . . . . 5 (𝜑 → (♯‘(𝑊‘(𝐼 − 1))) = 𝑁)
5150oveq2d 7421 . . . 4 (𝜑 → (0..^(♯‘(𝑊‘(𝐼 − 1)))) = (0..^𝑁))
5243, 51eleqtrrd 2837 . . 3 (𝜑 → (𝐽 − 1) ∈ (0..^(♯‘(𝑊‘(𝐼 − 1)))))
53 wrdsymbcl 14545 . . 3 (((𝑊‘(𝐼 − 1)) ∈ Word 𝑉 ∧ (𝐽 − 1) ∈ (0..^(♯‘(𝑊‘(𝐼 − 1))))) → ((𝑊‘(𝐼 − 1))‘(𝐽 − 1)) ∈ 𝑉)
5441, 52, 53syl2anc 584 . 2 (𝜑 → ((𝑊‘(𝐼 − 1))‘(𝐽 − 1)) ∈ 𝑉)
555, 10, 14, 35, 54ovmpod 7559 1 (𝜑 → (𝐼𝑀𝐽) = ((𝑊‘(𝐼 − 1))‘(𝐽 − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cfv 6531  (class class class)co 7405  cmpo 7407  0cc0 11129  1c1 11130  cmin 11466  cn 12240  cuz 12852  ...cfz 13524  ..^cfzo 13671  chash 14348  Word cword 14531  litMatclmat 33842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-hash 14349  df-word 14532  df-lmat 33843
This theorem is referenced by:  lmatfvlem  33846  lmat22e11  33849
  Copyright terms: Public domain W3C validator