![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iota2df | Structured version Visualization version GIF version |
Description: A condition that allows to represent "the unique element such that 𝜑 " with a class expression 𝐴. (Contributed by NM, 30-Dec-2014.) |
Ref | Expression |
---|---|
iota2df.1 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
iota2df.2 | ⊢ (𝜑 → ∃!𝑥𝜓) |
iota2df.3 | ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) |
iota2df.4 | ⊢ Ⅎ𝑥𝜑 |
iota2df.5 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
iota2df.6 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
Ref | Expression |
---|---|
iota2df | ⊢ (𝜑 → (𝜒 ↔ (℩𝑥𝜓) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iota2df.1 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
2 | iota2df.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) | |
3 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵) | |
4 | 3 | eqeq2d 2738 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → ((℩𝑥𝜓) = 𝑥 ↔ (℩𝑥𝜓) = 𝐵)) |
5 | 2, 4 | bibi12d 345 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → ((𝜓 ↔ (℩𝑥𝜓) = 𝑥) ↔ (𝜒 ↔ (℩𝑥𝜓) = 𝐵))) |
6 | iota2df.2 | . . 3 ⊢ (𝜑 → ∃!𝑥𝜓) | |
7 | iota1 6519 | . . 3 ⊢ (∃!𝑥𝜓 → (𝜓 ↔ (℩𝑥𝜓) = 𝑥)) | |
8 | 6, 7 | syl 17 | . 2 ⊢ (𝜑 → (𝜓 ↔ (℩𝑥𝜓) = 𝑥)) |
9 | iota2df.4 | . 2 ⊢ Ⅎ𝑥𝜑 | |
10 | iota2df.6 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
11 | iota2df.5 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
12 | nfiota1 6496 | . . . . 5 ⊢ Ⅎ𝑥(℩𝑥𝜓) | |
13 | 12 | a1i 11 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥(℩𝑥𝜓)) |
14 | 13, 10 | nfeqd 2908 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(℩𝑥𝜓) = 𝐵) |
15 | 11, 14 | nfbid 1898 | . 2 ⊢ (𝜑 → Ⅎ𝑥(𝜒 ↔ (℩𝑥𝜓) = 𝐵)) |
16 | 1, 5, 8, 9, 10, 15 | vtocldf 3542 | 1 ⊢ (𝜑 → (𝜒 ↔ (℩𝑥𝜓) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 Ⅎwnf 1778 ∈ wcel 2099 ∃!weu 2557 Ⅎwnfc 2878 ℩cio 6492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ral 3057 df-rex 3066 df-v 3471 df-un 3949 df-in 3951 df-ss 3961 df-sn 4625 df-pr 4627 df-uni 4904 df-iota 6494 |
This theorem is referenced by: iota2d 6530 iota2 6531 riota2df 7394 opiota 8055 |
Copyright terms: Public domain | W3C validator |