Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  riotasv2d Structured version   Visualization version   GIF version

Theorem riotasv2d 37815
Description: Value of description binder 𝐷 for a single-valued class expression 𝐶(𝑦) (as in e.g. reusv2 5400). Special case of riota2f 7386. (Contributed by NM, 2-Mar-2013.)
Hypotheses
Ref Expression
riotasv2d.1 𝑦𝜑
riotasv2d.2 (𝜑𝑦𝐹)
riotasv2d.3 (𝜑 → Ⅎ𝑦𝜒)
riotasv2d.4 (𝜑𝐷 = (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)))
riotasv2d.5 ((𝜑𝑦 = 𝐸) → (𝜓𝜒))
riotasv2d.6 ((𝜑𝑦 = 𝐸) → 𝐶 = 𝐹)
riotasv2d.7 (𝜑𝐷𝐴)
riotasv2d.8 (𝜑𝐸𝐵)
riotasv2d.9 (𝜑𝜒)
Assertion
Ref Expression
riotasv2d ((𝜑𝐴𝑉) → 𝐷 = 𝐹)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶   𝑦,𝐸   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝜒(𝑥,𝑦)   𝐶(𝑦)   𝐷(𝑥,𝑦)   𝐸(𝑥)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem riotasv2d
StepHypRef Expression
1 elex 3492 . 2 (𝐴𝑉𝐴 ∈ V)
2 riotasv2d.8 . . . 4 (𝜑𝐸𝐵)
32adantr 481 . . 3 ((𝜑𝐴 ∈ V) → 𝐸𝐵)
4 riotasv2d.9 . . . 4 (𝜑𝜒)
54adantr 481 . . 3 ((𝜑𝐴 ∈ V) → 𝜒)
6 eleq1 2821 . . . . . . . 8 (𝑦 = 𝐸 → (𝑦𝐵𝐸𝐵))
76adantl 482 . . . . . . 7 ((𝜑𝑦 = 𝐸) → (𝑦𝐵𝐸𝐵))
8 riotasv2d.5 . . . . . . 7 ((𝜑𝑦 = 𝐸) → (𝜓𝜒))
97, 8anbi12d 631 . . . . . 6 ((𝜑𝑦 = 𝐸) → ((𝑦𝐵𝜓) ↔ (𝐸𝐵𝜒)))
10 riotasv2d.6 . . . . . . 7 ((𝜑𝑦 = 𝐸) → 𝐶 = 𝐹)
1110eqeq2d 2743 . . . . . 6 ((𝜑𝑦 = 𝐸) → (𝐷 = 𝐶𝐷 = 𝐹))
129, 11imbi12d 344 . . . . 5 ((𝜑𝑦 = 𝐸) → (((𝑦𝐵𝜓) → 𝐷 = 𝐶) ↔ ((𝐸𝐵𝜒) → 𝐷 = 𝐹)))
1312adantlr 713 . . . 4 (((𝜑𝐴 ∈ V) ∧ 𝑦 = 𝐸) → (((𝑦𝐵𝜓) → 𝐷 = 𝐶) ↔ ((𝐸𝐵𝜒) → 𝐷 = 𝐹)))
14 riotasv2d.4 . . . . 5 (𝜑𝐷 = (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)))
15 riotasv2d.7 . . . . 5 (𝜑𝐷𝐴)
1614, 15riotasvd 37814 . . . 4 ((𝜑𝐴 ∈ V) → ((𝑦𝐵𝜓) → 𝐷 = 𝐶))
17 riotasv2d.1 . . . . 5 𝑦𝜑
18 nfv 1917 . . . . 5 𝑦 𝐴 ∈ V
1917, 18nfan 1902 . . . 4 𝑦(𝜑𝐴 ∈ V)
20 nfcvd 2904 . . . 4 ((𝜑𝐴 ∈ V) → 𝑦𝐸)
21 nfvd 1918 . . . . . . 7 (𝜑 → Ⅎ𝑦 𝐸𝐵)
22 riotasv2d.3 . . . . . . 7 (𝜑 → Ⅎ𝑦𝜒)
2321, 22nfand 1900 . . . . . 6 (𝜑 → Ⅎ𝑦(𝐸𝐵𝜒))
24 nfra1 3281 . . . . . . . . 9 𝑦𝑦𝐵 (𝜓𝑥 = 𝐶)
25 nfcv 2903 . . . . . . . . 9 𝑦𝐴
2624, 25nfriota 7374 . . . . . . . 8 𝑦(𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶))
2717, 14nfceqdf 2898 . . . . . . . 8 (𝜑 → (𝑦𝐷𝑦(𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶))))
2826, 27mpbiri 257 . . . . . . 7 (𝜑𝑦𝐷)
29 riotasv2d.2 . . . . . . 7 (𝜑𝑦𝐹)
3028, 29nfeqd 2913 . . . . . 6 (𝜑 → Ⅎ𝑦 𝐷 = 𝐹)
3123, 30nfimd 1897 . . . . 5 (𝜑 → Ⅎ𝑦((𝐸𝐵𝜒) → 𝐷 = 𝐹))
3231adantr 481 . . . 4 ((𝜑𝐴 ∈ V) → Ⅎ𝑦((𝐸𝐵𝜒) → 𝐷 = 𝐹))
333, 13, 16, 19, 20, 32vtocldf 3541 . . 3 ((𝜑𝐴 ∈ V) → ((𝐸𝐵𝜒) → 𝐷 = 𝐹))
343, 5, 33mp2and 697 . 2 ((𝜑𝐴 ∈ V) → 𝐷 = 𝐹)
351, 34sylan2 593 1 ((𝜑𝐴𝑉) → 𝐷 = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wnf 1785  wcel 2106  wnfc 2883  wral 3061  Vcvv 3474  crio 7360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-riotaBAD 37811
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6492  df-fun 6542  df-fv 6548  df-riota 7361  df-undef 8254
This theorem is referenced by:  riotasv2s  37816  cdleme42b  39337
  Copyright terms: Public domain W3C validator