Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  riotasv2d Structured version   Visualization version   GIF version

Theorem riotasv2d 38913
Description: Value of description binder 𝐷 for a single-valued class expression 𝐶(𝑦) (as in e.g. reusv2 5421). Special case of riota2f 7429. (Contributed by NM, 2-Mar-2013.)
Hypotheses
Ref Expression
riotasv2d.1 𝑦𝜑
riotasv2d.2 (𝜑𝑦𝐹)
riotasv2d.3 (𝜑 → Ⅎ𝑦𝜒)
riotasv2d.4 (𝜑𝐷 = (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)))
riotasv2d.5 ((𝜑𝑦 = 𝐸) → (𝜓𝜒))
riotasv2d.6 ((𝜑𝑦 = 𝐸) → 𝐶 = 𝐹)
riotasv2d.7 (𝜑𝐷𝐴)
riotasv2d.8 (𝜑𝐸𝐵)
riotasv2d.9 (𝜑𝜒)
Assertion
Ref Expression
riotasv2d ((𝜑𝐴𝑉) → 𝐷 = 𝐹)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶   𝑦,𝐸   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝜒(𝑥,𝑦)   𝐶(𝑦)   𝐷(𝑥,𝑦)   𝐸(𝑥)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem riotasv2d
StepHypRef Expression
1 elex 3509 . 2 (𝐴𝑉𝐴 ∈ V)
2 riotasv2d.8 . . . 4 (𝜑𝐸𝐵)
32adantr 480 . . 3 ((𝜑𝐴 ∈ V) → 𝐸𝐵)
4 riotasv2d.9 . . . 4 (𝜑𝜒)
54adantr 480 . . 3 ((𝜑𝐴 ∈ V) → 𝜒)
6 eleq1 2832 . . . . . . . 8 (𝑦 = 𝐸 → (𝑦𝐵𝐸𝐵))
76adantl 481 . . . . . . 7 ((𝜑𝑦 = 𝐸) → (𝑦𝐵𝐸𝐵))
8 riotasv2d.5 . . . . . . 7 ((𝜑𝑦 = 𝐸) → (𝜓𝜒))
97, 8anbi12d 631 . . . . . 6 ((𝜑𝑦 = 𝐸) → ((𝑦𝐵𝜓) ↔ (𝐸𝐵𝜒)))
10 riotasv2d.6 . . . . . . 7 ((𝜑𝑦 = 𝐸) → 𝐶 = 𝐹)
1110eqeq2d 2751 . . . . . 6 ((𝜑𝑦 = 𝐸) → (𝐷 = 𝐶𝐷 = 𝐹))
129, 11imbi12d 344 . . . . 5 ((𝜑𝑦 = 𝐸) → (((𝑦𝐵𝜓) → 𝐷 = 𝐶) ↔ ((𝐸𝐵𝜒) → 𝐷 = 𝐹)))
1312adantlr 714 . . . 4 (((𝜑𝐴 ∈ V) ∧ 𝑦 = 𝐸) → (((𝑦𝐵𝜓) → 𝐷 = 𝐶) ↔ ((𝐸𝐵𝜒) → 𝐷 = 𝐹)))
14 riotasv2d.4 . . . . 5 (𝜑𝐷 = (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)))
15 riotasv2d.7 . . . . 5 (𝜑𝐷𝐴)
1614, 15riotasvd 38912 . . . 4 ((𝜑𝐴 ∈ V) → ((𝑦𝐵𝜓) → 𝐷 = 𝐶))
17 riotasv2d.1 . . . . 5 𝑦𝜑
18 nfv 1913 . . . . 5 𝑦 𝐴 ∈ V
1917, 18nfan 1898 . . . 4 𝑦(𝜑𝐴 ∈ V)
20 nfcvd 2909 . . . 4 ((𝜑𝐴 ∈ V) → 𝑦𝐸)
21 nfvd 1914 . . . . . . 7 (𝜑 → Ⅎ𝑦 𝐸𝐵)
22 riotasv2d.3 . . . . . . 7 (𝜑 → Ⅎ𝑦𝜒)
2321, 22nfand 1896 . . . . . 6 (𝜑 → Ⅎ𝑦(𝐸𝐵𝜒))
24 nfra1 3290 . . . . . . . . 9 𝑦𝑦𝐵 (𝜓𝑥 = 𝐶)
25 nfcv 2908 . . . . . . . . 9 𝑦𝐴
2624, 25nfriota 7417 . . . . . . . 8 𝑦(𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶))
2717, 14nfceqdf 2904 . . . . . . . 8 (𝜑 → (𝑦𝐷𝑦(𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶))))
2826, 27mpbiri 258 . . . . . . 7 (𝜑𝑦𝐷)
29 riotasv2d.2 . . . . . . 7 (𝜑𝑦𝐹)
3028, 29nfeqd 2919 . . . . . 6 (𝜑 → Ⅎ𝑦 𝐷 = 𝐹)
3123, 30nfimd 1893 . . . . 5 (𝜑 → Ⅎ𝑦((𝐸𝐵𝜒) → 𝐷 = 𝐹))
3231adantr 480 . . . 4 ((𝜑𝐴 ∈ V) → Ⅎ𝑦((𝐸𝐵𝜒) → 𝐷 = 𝐹))
333, 13, 16, 19, 20, 32vtocldf 3572 . . 3 ((𝜑𝐴 ∈ V) → ((𝐸𝐵𝜒) → 𝐷 = 𝐹))
343, 5, 33mp2and 698 . 2 ((𝜑𝐴 ∈ V) → 𝐷 = 𝐹)
351, 34sylan2 592 1 ((𝜑𝐴𝑉) → 𝐷 = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wnf 1781  wcel 2108  wnfc 2893  wral 3067  Vcvv 3488  crio 7403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-riotaBAD 38909
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-riota 7404  df-undef 8314
This theorem is referenced by:  riotasv2s  38914  cdleme42b  40435
  Copyright terms: Public domain W3C validator