Proof of Theorem riotasv2d
| Step | Hyp | Ref
| Expression |
| 1 | | elex 3501 |
. 2
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) |
| 2 | | riotasv2d.8 |
. . . 4
⊢ (𝜑 → 𝐸 ∈ 𝐵) |
| 3 | 2 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ∈ V) → 𝐸 ∈ 𝐵) |
| 4 | | riotasv2d.9 |
. . . 4
⊢ (𝜑 → 𝜒) |
| 5 | 4 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ∈ V) → 𝜒) |
| 6 | | eleq1 2829 |
. . . . . . . 8
⊢ (𝑦 = 𝐸 → (𝑦 ∈ 𝐵 ↔ 𝐸 ∈ 𝐵)) |
| 7 | 6 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 = 𝐸) → (𝑦 ∈ 𝐵 ↔ 𝐸 ∈ 𝐵)) |
| 8 | | riotasv2d.5 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 = 𝐸) → (𝜓 ↔ 𝜒)) |
| 9 | 7, 8 | anbi12d 632 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 = 𝐸) → ((𝑦 ∈ 𝐵 ∧ 𝜓) ↔ (𝐸 ∈ 𝐵 ∧ 𝜒))) |
| 10 | | riotasv2d.6 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 = 𝐸) → 𝐶 = 𝐹) |
| 11 | 10 | eqeq2d 2748 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 = 𝐸) → (𝐷 = 𝐶 ↔ 𝐷 = 𝐹)) |
| 12 | 9, 11 | imbi12d 344 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 = 𝐸) → (((𝑦 ∈ 𝐵 ∧ 𝜓) → 𝐷 = 𝐶) ↔ ((𝐸 ∈ 𝐵 ∧ 𝜒) → 𝐷 = 𝐹))) |
| 13 | 12 | adantlr 715 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ V) ∧ 𝑦 = 𝐸) → (((𝑦 ∈ 𝐵 ∧ 𝜓) → 𝐷 = 𝐶) ↔ ((𝐸 ∈ 𝐵 ∧ 𝜒) → 𝐷 = 𝐹))) |
| 14 | | riotasv2d.4 |
. . . . 5
⊢ (𝜑 → 𝐷 = (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝑥 = 𝐶))) |
| 15 | | riotasv2d.7 |
. . . . 5
⊢ (𝜑 → 𝐷 ∈ 𝐴) |
| 16 | 14, 15 | riotasvd 38957 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ∈ V) → ((𝑦 ∈ 𝐵 ∧ 𝜓) → 𝐷 = 𝐶)) |
| 17 | | riotasv2d.1 |
. . . . 5
⊢
Ⅎ𝑦𝜑 |
| 18 | | nfv 1914 |
. . . . 5
⊢
Ⅎ𝑦 𝐴 ∈ V |
| 19 | 17, 18 | nfan 1899 |
. . . 4
⊢
Ⅎ𝑦(𝜑 ∧ 𝐴 ∈ V) |
| 20 | | nfcvd 2906 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ∈ V) → Ⅎ𝑦𝐸) |
| 21 | | nfvd 1915 |
. . . . . . 7
⊢ (𝜑 → Ⅎ𝑦 𝐸 ∈ 𝐵) |
| 22 | | riotasv2d.3 |
. . . . . . 7
⊢ (𝜑 → Ⅎ𝑦𝜒) |
| 23 | 21, 22 | nfand 1897 |
. . . . . 6
⊢ (𝜑 → Ⅎ𝑦(𝐸 ∈ 𝐵 ∧ 𝜒)) |
| 24 | | nfra1 3284 |
. . . . . . . . 9
⊢
Ⅎ𝑦∀𝑦 ∈ 𝐵 (𝜓 → 𝑥 = 𝐶) |
| 25 | | nfcv 2905 |
. . . . . . . . 9
⊢
Ⅎ𝑦𝐴 |
| 26 | 24, 25 | nfriota 7400 |
. . . . . . . 8
⊢
Ⅎ𝑦(℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝑥 = 𝐶)) |
| 27 | 17, 14 | nfceqdf 2901 |
. . . . . . . 8
⊢ (𝜑 → (Ⅎ𝑦𝐷 ↔ Ⅎ𝑦(℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜓 → 𝑥 = 𝐶)))) |
| 28 | 26, 27 | mpbiri 258 |
. . . . . . 7
⊢ (𝜑 → Ⅎ𝑦𝐷) |
| 29 | | riotasv2d.2 |
. . . . . . 7
⊢ (𝜑 → Ⅎ𝑦𝐹) |
| 30 | 28, 29 | nfeqd 2916 |
. . . . . 6
⊢ (𝜑 → Ⅎ𝑦 𝐷 = 𝐹) |
| 31 | 23, 30 | nfimd 1894 |
. . . . 5
⊢ (𝜑 → Ⅎ𝑦((𝐸 ∈ 𝐵 ∧ 𝜒) → 𝐷 = 𝐹)) |
| 32 | 31 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ∈ V) → Ⅎ𝑦((𝐸 ∈ 𝐵 ∧ 𝜒) → 𝐷 = 𝐹)) |
| 33 | 3, 13, 16, 19, 20, 32 | vtocldf 3560 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ∈ V) → ((𝐸 ∈ 𝐵 ∧ 𝜒) → 𝐷 = 𝐹)) |
| 34 | 3, 5, 33 | mp2and 699 |
. 2
⊢ ((𝜑 ∧ 𝐴 ∈ V) → 𝐷 = 𝐹) |
| 35 | 1, 34 | sylan2 593 |
1
⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → 𝐷 = 𝐹) |