Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vtocle | Structured version Visualization version GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 9-Sep-1993.) |
Ref | Expression |
---|---|
vtocle.1 | ⊢ 𝐴 ∈ V |
vtocle.2 | ⊢ (𝑥 = 𝐴 → 𝜑) |
Ref | Expression |
---|---|
vtocle | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtocle.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | vtocle.2 | . . 3 ⊢ (𝑥 = 𝐴 → 𝜑) | |
3 | 2 | vtocleg 3511 | . 2 ⊢ (𝐴 ∈ V → 𝜑) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-clel 2817 |
This theorem is referenced by: zfrepclf 5213 tz6.12i 6782 eloprabga 7360 eloprabgaOLD 7361 cfflb 9946 axcc3 10125 nn0ind-raph 12350 finxpreclem6 35494 |
Copyright terms: Public domain | W3C validator |