MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtocle Structured version   Visualization version   GIF version

Theorem vtocle 3524
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 9-Sep-1993.) Avoid df-clab 2709. (Revised by Wolf Lammen, 31-May-2025.)
Hypotheses
Ref Expression
vtocle.1 𝐴 ∈ V
vtocle.2 (𝑥 = 𝐴𝜑)
Assertion
Ref Expression
vtocle 𝜑
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥

Proof of Theorem vtocle
StepHypRef Expression
1 vtocle.2 . 2 (𝑥 = 𝐴𝜑)
2 vtocle.1 . . 3 𝐴 ∈ V
32isseti 3468 . 2 𝑥 𝑥 = 𝐴
41, 3exlimiiv 1931 1 𝜑
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-clel 2804
This theorem is referenced by:  vtocl  3527  zfrepclf  5249  tz6.12i  6889  eloprabga  7501  cfflb  10219  axcc3  10398  nn0ind-raph  12641  finxpreclem6  37391  ormkglobd  46880  tworepnotupword  46891
  Copyright terms: Public domain W3C validator