MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtocle Structured version   Visualization version   GIF version

Theorem vtocle 3508
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 9-Sep-1993.) Avoid df-clab 2710. (Revised by Wolf Lammen, 31-May-2025.)
Hypotheses
Ref Expression
vtocle.1 𝐴 ∈ V
vtocle.2 (𝑥 = 𝐴𝜑)
Assertion
Ref Expression
vtocle 𝜑
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥

Proof of Theorem vtocle
StepHypRef Expression
1 vtocle.2 . 2 (𝑥 = 𝐴𝜑)
2 vtocle.1 . . 3 𝐴 ∈ V
32isseti 3454 . 2 𝑥 𝑥 = 𝐴
41, 3exlimiiv 1932 1 𝜑
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-clel 2806
This theorem is referenced by:  vtocl  3511  zfrepclf  5224  tz6.12i  6843  eloprabga  7450  cfflb  10145  axcc3  10324  nn0ind-raph  12568  finxpreclem6  37430  ormkglobd  46913
  Copyright terms: Public domain W3C validator