Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtocle Structured version   Visualization version   GIF version

Theorem vtocle 3583
 Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 9-Sep-1993.)
Hypotheses
Ref Expression
vtocle.1 𝐴 ∈ V
vtocle.2 (𝑥 = 𝐴𝜑)
Assertion
Ref Expression
vtocle 𝜑
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥

Proof of Theorem vtocle
StepHypRef Expression
1 vtocle.1 . 2 𝐴 ∈ V
2 vtocle.2 . . 3 (𝑥 = 𝐴𝜑)
32vtocleg 3580 . 2 (𝐴 ∈ V → 𝜑)
41, 3ax-mp 5 1 𝜑
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1533   ∈ wcel 2110  Vcvv 3494 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-ext 2793 This theorem depends on definitions:  df-bi 209  df-an 399  df-ex 1777  df-cleq 2814  df-clel 2893 This theorem is referenced by:  zfrepclf  5190  tz6.12i  6690  eloprabga  7255  cfflb  9675  axcc3  9854  nn0ind-raph  12076  finxpreclem6  34671
 Copyright terms: Public domain W3C validator