MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtocle Structured version   Visualization version   GIF version

Theorem vtocle 3514
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 9-Sep-1993.)
Hypotheses
Ref Expression
vtocle.1 𝐴 ∈ V
vtocle.2 (𝑥 = 𝐴𝜑)
Assertion
Ref Expression
vtocle 𝜑
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥

Proof of Theorem vtocle
StepHypRef Expression
1 vtocle.1 . 2 𝐴 ∈ V
2 vtocle.2 . . 3 (𝑥 = 𝐴𝜑)
32vtocleg 3511 . 2 (𝐴 ∈ V → 𝜑)
41, 3ax-mp 5 1 𝜑
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-clel 2817
This theorem is referenced by:  zfrepclf  5213  tz6.12i  6782  eloprabga  7360  eloprabgaOLD  7361  cfflb  9946  axcc3  10125  nn0ind-raph  12350  finxpreclem6  35494
  Copyright terms: Public domain W3C validator