MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfflb Structured version   Visualization version   GIF version

Theorem cfflb 10328
Description: If there is a cofinal map from 𝐵 to 𝐴, then 𝐵 is at least (cf‘𝐴). This theorem and cff1 10327 motivate the picture of (cf‘𝐴) as the greatest lower bound of the domain of cofinal maps into 𝐴. (Contributed by Mario Carneiro, 28-Feb-2013.)
Assertion
Ref Expression
cfflb ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑓(𝑓:𝐵𝐴 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤)) → (cf‘𝐴) ⊆ 𝐵))
Distinct variable groups:   𝐴,𝑓,𝑤,𝑧   𝐵,𝑓,𝑤,𝑧

Proof of Theorem cfflb
Dummy variables 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frn 6754 . . . . . . 7 (𝑓:𝐵𝐴 → ran 𝑓𝐴)
21adantr 480 . . . . . 6 ((𝑓:𝐵𝐴 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤)) → ran 𝑓𝐴)
3 ffn 6747 . . . . . . . . . . 11 (𝑓:𝐵𝐴𝑓 Fn 𝐵)
4 fnfvelrn 7114 . . . . . . . . . . 11 ((𝑓 Fn 𝐵𝑤𝐵) → (𝑓𝑤) ∈ ran 𝑓)
53, 4sylan 579 . . . . . . . . . 10 ((𝑓:𝐵𝐴𝑤𝐵) → (𝑓𝑤) ∈ ran 𝑓)
6 sseq2 4035 . . . . . . . . . . 11 (𝑠 = (𝑓𝑤) → (𝑧𝑠𝑧 ⊆ (𝑓𝑤)))
76rspcev 3635 . . . . . . . . . 10 (((𝑓𝑤) ∈ ran 𝑓𝑧 ⊆ (𝑓𝑤)) → ∃𝑠 ∈ ran 𝑓 𝑧𝑠)
85, 7sylan 579 . . . . . . . . 9 (((𝑓:𝐵𝐴𝑤𝐵) ∧ 𝑧 ⊆ (𝑓𝑤)) → ∃𝑠 ∈ ran 𝑓 𝑧𝑠)
98rexlimdva2 3163 . . . . . . . 8 (𝑓:𝐵𝐴 → (∃𝑤𝐵 𝑧 ⊆ (𝑓𝑤) → ∃𝑠 ∈ ran 𝑓 𝑧𝑠))
109ralimdv 3175 . . . . . . 7 (𝑓:𝐵𝐴 → (∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤) → ∀𝑧𝐴𝑠 ∈ ran 𝑓 𝑧𝑠))
1110imp 406 . . . . . 6 ((𝑓:𝐵𝐴 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤)) → ∀𝑧𝐴𝑠 ∈ ran 𝑓 𝑧𝑠)
122, 11jca 511 . . . . 5 ((𝑓:𝐵𝐴 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤)) → (ran 𝑓𝐴 ∧ ∀𝑧𝐴𝑠 ∈ ran 𝑓 𝑧𝑠))
13 fvex 6933 . . . . . 6 (card‘ran 𝑓) ∈ V
14 cfval 10316 . . . . . . . . . . 11 (𝐴 ∈ On → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))})
1514adantr 480 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))})
16153ad2ant2 1134 . . . . . . . . 9 ((𝑥 = (card‘ran 𝑓) ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (ran 𝑓𝐴 ∧ ∀𝑧𝐴𝑠 ∈ ran 𝑓 𝑧𝑠)) → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))})
17 vex 3492 . . . . . . . . . . . . . 14 𝑓 ∈ V
1817rnex 7950 . . . . . . . . . . . . 13 ran 𝑓 ∈ V
19 fveq2 6920 . . . . . . . . . . . . . . 15 (𝑦 = ran 𝑓 → (card‘𝑦) = (card‘ran 𝑓))
2019eqeq2d 2751 . . . . . . . . . . . . . 14 (𝑦 = ran 𝑓 → (𝑥 = (card‘𝑦) ↔ 𝑥 = (card‘ran 𝑓)))
21 sseq1 4034 . . . . . . . . . . . . . . 15 (𝑦 = ran 𝑓 → (𝑦𝐴 ↔ ran 𝑓𝐴))
22 rexeq 3330 . . . . . . . . . . . . . . . 16 (𝑦 = ran 𝑓 → (∃𝑠𝑦 𝑧𝑠 ↔ ∃𝑠 ∈ ran 𝑓 𝑧𝑠))
2322ralbidv 3184 . . . . . . . . . . . . . . 15 (𝑦 = ran 𝑓 → (∀𝑧𝐴𝑠𝑦 𝑧𝑠 ↔ ∀𝑧𝐴𝑠 ∈ ran 𝑓 𝑧𝑠))
2421, 23anbi12d 631 . . . . . . . . . . . . . 14 (𝑦 = ran 𝑓 → ((𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠) ↔ (ran 𝑓𝐴 ∧ ∀𝑧𝐴𝑠 ∈ ran 𝑓 𝑧𝑠)))
2520, 24anbi12d 631 . . . . . . . . . . . . 13 (𝑦 = ran 𝑓 → ((𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠)) ↔ (𝑥 = (card‘ran 𝑓) ∧ (ran 𝑓𝐴 ∧ ∀𝑧𝐴𝑠 ∈ ran 𝑓 𝑧𝑠))))
2618, 25spcev 3619 . . . . . . . . . . . 12 ((𝑥 = (card‘ran 𝑓) ∧ (ran 𝑓𝐴 ∧ ∀𝑧𝐴𝑠 ∈ ran 𝑓 𝑧𝑠)) → ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠)))
27 abid 2721 . . . . . . . . . . . 12 (𝑥 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))} ↔ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠)))
2826, 27sylibr 234 . . . . . . . . . . 11 ((𝑥 = (card‘ran 𝑓) ∧ (ran 𝑓𝐴 ∧ ∀𝑧𝐴𝑠 ∈ ran 𝑓 𝑧𝑠)) → 𝑥 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))})
29 intss1 4987 . . . . . . . . . . 11 (𝑥 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))} → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))} ⊆ 𝑥)
3028, 29syl 17 . . . . . . . . . 10 ((𝑥 = (card‘ran 𝑓) ∧ (ran 𝑓𝐴 ∧ ∀𝑧𝐴𝑠 ∈ ran 𝑓 𝑧𝑠)) → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))} ⊆ 𝑥)
31303adant2 1131 . . . . . . . . 9 ((𝑥 = (card‘ran 𝑓) ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (ran 𝑓𝐴 ∧ ∀𝑧𝐴𝑠 ∈ ran 𝑓 𝑧𝑠)) → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))} ⊆ 𝑥)
3216, 31eqsstrd 4047 . . . . . . . 8 ((𝑥 = (card‘ran 𝑓) ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (ran 𝑓𝐴 ∧ ∀𝑧𝐴𝑠 ∈ ran 𝑓 𝑧𝑠)) → (cf‘𝐴) ⊆ 𝑥)
33323expib 1122 . . . . . . 7 (𝑥 = (card‘ran 𝑓) → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (ran 𝑓𝐴 ∧ ∀𝑧𝐴𝑠 ∈ ran 𝑓 𝑧𝑠)) → (cf‘𝐴) ⊆ 𝑥))
34 sseq2 4035 . . . . . . 7 (𝑥 = (card‘ran 𝑓) → ((cf‘𝐴) ⊆ 𝑥 ↔ (cf‘𝐴) ⊆ (card‘ran 𝑓)))
3533, 34sylibd 239 . . . . . 6 (𝑥 = (card‘ran 𝑓) → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (ran 𝑓𝐴 ∧ ∀𝑧𝐴𝑠 ∈ ran 𝑓 𝑧𝑠)) → (cf‘𝐴) ⊆ (card‘ran 𝑓)))
3613, 35vtocle 3567 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (ran 𝑓𝐴 ∧ ∀𝑧𝐴𝑠 ∈ ran 𝑓 𝑧𝑠)) → (cf‘𝐴) ⊆ (card‘ran 𝑓))
3712, 36sylan2 592 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑓:𝐵𝐴 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤))) → (cf‘𝐴) ⊆ (card‘ran 𝑓))
38 cardidm 10028 . . . . . . 7 (card‘(card‘ran 𝑓)) = (card‘ran 𝑓)
39 onss 7820 . . . . . . . . . . . . . 14 (𝐴 ∈ On → 𝐴 ⊆ On)
401, 39sylan9ssr 4023 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝑓:𝐵𝐴) → ran 𝑓 ⊆ On)
41403adant2 1131 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑓:𝐵𝐴) → ran 𝑓 ⊆ On)
42 onssnum 10109 . . . . . . . . . . . 12 ((ran 𝑓 ∈ V ∧ ran 𝑓 ⊆ On) → ran 𝑓 ∈ dom card)
4318, 41, 42sylancr 586 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑓:𝐵𝐴) → ran 𝑓 ∈ dom card)
44 cardid2 10022 . . . . . . . . . . 11 (ran 𝑓 ∈ dom card → (card‘ran 𝑓) ≈ ran 𝑓)
4543, 44syl 17 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑓:𝐵𝐴) → (card‘ran 𝑓) ≈ ran 𝑓)
46 onenon 10018 . . . . . . . . . . . . 13 (𝐵 ∈ On → 𝐵 ∈ dom card)
47 dffn4 6840 . . . . . . . . . . . . . 14 (𝑓 Fn 𝐵𝑓:𝐵onto→ran 𝑓)
483, 47sylib 218 . . . . . . . . . . . . 13 (𝑓:𝐵𝐴𝑓:𝐵onto→ran 𝑓)
49 fodomnum 10126 . . . . . . . . . . . . 13 (𝐵 ∈ dom card → (𝑓:𝐵onto→ran 𝑓 → ran 𝑓𝐵))
5046, 48, 49syl2im 40 . . . . . . . . . . . 12 (𝐵 ∈ On → (𝑓:𝐵𝐴 → ran 𝑓𝐵))
5150imp 406 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝑓:𝐵𝐴) → ran 𝑓𝐵)
52513adant1 1130 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑓:𝐵𝐴) → ran 𝑓𝐵)
53 endomtr 9072 . . . . . . . . . 10 (((card‘ran 𝑓) ≈ ran 𝑓 ∧ ran 𝑓𝐵) → (card‘ran 𝑓) ≼ 𝐵)
5445, 52, 53syl2anc 583 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑓:𝐵𝐴) → (card‘ran 𝑓) ≼ 𝐵)
55 cardon 10013 . . . . . . . . . . . 12 (card‘ran 𝑓) ∈ On
56 onenon 10018 . . . . . . . . . . . 12 ((card‘ran 𝑓) ∈ On → (card‘ran 𝑓) ∈ dom card)
5755, 56ax-mp 5 . . . . . . . . . . 11 (card‘ran 𝑓) ∈ dom card
58 carddom2 10046 . . . . . . . . . . 11 (((card‘ran 𝑓) ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘(card‘ran 𝑓)) ⊆ (card‘𝐵) ↔ (card‘ran 𝑓) ≼ 𝐵))
5957, 46, 58sylancr 586 . . . . . . . . . 10 (𝐵 ∈ On → ((card‘(card‘ran 𝑓)) ⊆ (card‘𝐵) ↔ (card‘ran 𝑓) ≼ 𝐵))
60593ad2ant2 1134 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑓:𝐵𝐴) → ((card‘(card‘ran 𝑓)) ⊆ (card‘𝐵) ↔ (card‘ran 𝑓) ≼ 𝐵))
6154, 60mpbird 257 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑓:𝐵𝐴) → (card‘(card‘ran 𝑓)) ⊆ (card‘𝐵))
62 cardonle 10026 . . . . . . . . 9 (𝐵 ∈ On → (card‘𝐵) ⊆ 𝐵)
63623ad2ant2 1134 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑓:𝐵𝐴) → (card‘𝐵) ⊆ 𝐵)
6461, 63sstrd 4019 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑓:𝐵𝐴) → (card‘(card‘ran 𝑓)) ⊆ 𝐵)
6538, 64eqsstrrid 4058 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑓:𝐵𝐴) → (card‘ran 𝑓) ⊆ 𝐵)
66653expa 1118 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑓:𝐵𝐴) → (card‘ran 𝑓) ⊆ 𝐵)
6766adantrr 716 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑓:𝐵𝐴 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤))) → (card‘ran 𝑓) ⊆ 𝐵)
6837, 67sstrd 4019 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑓:𝐵𝐴 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤))) → (cf‘𝐴) ⊆ 𝐵)
6968ex 412 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑓:𝐵𝐴 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤)) → (cf‘𝐴) ⊆ 𝐵))
7069exlimdv 1932 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑓(𝑓:𝐵𝐴 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤)) → (cf‘𝐴) ⊆ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wral 3067  wrex 3076  Vcvv 3488  wss 3976   cint 4970   class class class wbr 5166  dom cdm 5700  ran crn 5701  Oncon0 6395   Fn wfn 6568  wf 6569  ontowfo 6571  cfv 6573  cen 9000  cdom 9001  cardccrd 10004  cfccf 10006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-card 10008  df-cf 10010  df-acn 10011
This theorem is referenced by:  cfsmolem  10339  cfcoflem  10341  cfcof  10343  inar1  10844
  Copyright terms: Public domain W3C validator