MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfflb Structured version   Visualization version   GIF version

Theorem cfflb 10147
Description: If there is a cofinal map from 𝐵 to 𝐴, then 𝐵 is at least (cf‘𝐴). This theorem and cff1 10146 motivate the picture of (cf‘𝐴) as the greatest lower bound of the domain of cofinal maps into 𝐴. (Contributed by Mario Carneiro, 28-Feb-2013.)
Assertion
Ref Expression
cfflb ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑓(𝑓:𝐵𝐴 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤)) → (cf‘𝐴) ⊆ 𝐵))
Distinct variable groups:   𝐴,𝑓,𝑤,𝑧   𝐵,𝑓,𝑤,𝑧

Proof of Theorem cfflb
Dummy variables 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frn 6658 . . . . . . 7 (𝑓:𝐵𝐴 → ran 𝑓𝐴)
21adantr 480 . . . . . 6 ((𝑓:𝐵𝐴 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤)) → ran 𝑓𝐴)
3 ffn 6651 . . . . . . . . . . 11 (𝑓:𝐵𝐴𝑓 Fn 𝐵)
4 fnfvelrn 7013 . . . . . . . . . . 11 ((𝑓 Fn 𝐵𝑤𝐵) → (𝑓𝑤) ∈ ran 𝑓)
53, 4sylan 580 . . . . . . . . . 10 ((𝑓:𝐵𝐴𝑤𝐵) → (𝑓𝑤) ∈ ran 𝑓)
6 sseq2 3961 . . . . . . . . . . 11 (𝑠 = (𝑓𝑤) → (𝑧𝑠𝑧 ⊆ (𝑓𝑤)))
76rspcev 3577 . . . . . . . . . 10 (((𝑓𝑤) ∈ ran 𝑓𝑧 ⊆ (𝑓𝑤)) → ∃𝑠 ∈ ran 𝑓 𝑧𝑠)
85, 7sylan 580 . . . . . . . . 9 (((𝑓:𝐵𝐴𝑤𝐵) ∧ 𝑧 ⊆ (𝑓𝑤)) → ∃𝑠 ∈ ran 𝑓 𝑧𝑠)
98rexlimdva2 3135 . . . . . . . 8 (𝑓:𝐵𝐴 → (∃𝑤𝐵 𝑧 ⊆ (𝑓𝑤) → ∃𝑠 ∈ ran 𝑓 𝑧𝑠))
109ralimdv 3146 . . . . . . 7 (𝑓:𝐵𝐴 → (∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤) → ∀𝑧𝐴𝑠 ∈ ran 𝑓 𝑧𝑠))
1110imp 406 . . . . . 6 ((𝑓:𝐵𝐴 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤)) → ∀𝑧𝐴𝑠 ∈ ran 𝑓 𝑧𝑠)
122, 11jca 511 . . . . 5 ((𝑓:𝐵𝐴 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤)) → (ran 𝑓𝐴 ∧ ∀𝑧𝐴𝑠 ∈ ran 𝑓 𝑧𝑠))
13 fvex 6835 . . . . . 6 (card‘ran 𝑓) ∈ V
14 cfval 10135 . . . . . . . . . . 11 (𝐴 ∈ On → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))})
1514adantr 480 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))})
16153ad2ant2 1134 . . . . . . . . 9 ((𝑥 = (card‘ran 𝑓) ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (ran 𝑓𝐴 ∧ ∀𝑧𝐴𝑠 ∈ ran 𝑓 𝑧𝑠)) → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))})
17 vex 3440 . . . . . . . . . . . . . 14 𝑓 ∈ V
1817rnex 7840 . . . . . . . . . . . . 13 ran 𝑓 ∈ V
19 fveq2 6822 . . . . . . . . . . . . . . 15 (𝑦 = ran 𝑓 → (card‘𝑦) = (card‘ran 𝑓))
2019eqeq2d 2742 . . . . . . . . . . . . . 14 (𝑦 = ran 𝑓 → (𝑥 = (card‘𝑦) ↔ 𝑥 = (card‘ran 𝑓)))
21 sseq1 3960 . . . . . . . . . . . . . . 15 (𝑦 = ran 𝑓 → (𝑦𝐴 ↔ ran 𝑓𝐴))
22 rexeq 3288 . . . . . . . . . . . . . . . 16 (𝑦 = ran 𝑓 → (∃𝑠𝑦 𝑧𝑠 ↔ ∃𝑠 ∈ ran 𝑓 𝑧𝑠))
2322ralbidv 3155 . . . . . . . . . . . . . . 15 (𝑦 = ran 𝑓 → (∀𝑧𝐴𝑠𝑦 𝑧𝑠 ↔ ∀𝑧𝐴𝑠 ∈ ran 𝑓 𝑧𝑠))
2421, 23anbi12d 632 . . . . . . . . . . . . . 14 (𝑦 = ran 𝑓 → ((𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠) ↔ (ran 𝑓𝐴 ∧ ∀𝑧𝐴𝑠 ∈ ran 𝑓 𝑧𝑠)))
2520, 24anbi12d 632 . . . . . . . . . . . . 13 (𝑦 = ran 𝑓 → ((𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠)) ↔ (𝑥 = (card‘ran 𝑓) ∧ (ran 𝑓𝐴 ∧ ∀𝑧𝐴𝑠 ∈ ran 𝑓 𝑧𝑠))))
2618, 25spcev 3561 . . . . . . . . . . . 12 ((𝑥 = (card‘ran 𝑓) ∧ (ran 𝑓𝐴 ∧ ∀𝑧𝐴𝑠 ∈ ran 𝑓 𝑧𝑠)) → ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠)))
27 abid 2713 . . . . . . . . . . . 12 (𝑥 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))} ↔ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠)))
2826, 27sylibr 234 . . . . . . . . . . 11 ((𝑥 = (card‘ran 𝑓) ∧ (ran 𝑓𝐴 ∧ ∀𝑧𝐴𝑠 ∈ ran 𝑓 𝑧𝑠)) → 𝑥 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))})
29 intss1 4913 . . . . . . . . . . 11 (𝑥 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))} → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))} ⊆ 𝑥)
3028, 29syl 17 . . . . . . . . . 10 ((𝑥 = (card‘ran 𝑓) ∧ (ran 𝑓𝐴 ∧ ∀𝑧𝐴𝑠 ∈ ran 𝑓 𝑧𝑠)) → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))} ⊆ 𝑥)
31303adant2 1131 . . . . . . . . 9 ((𝑥 = (card‘ran 𝑓) ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (ran 𝑓𝐴 ∧ ∀𝑧𝐴𝑠 ∈ ran 𝑓 𝑧𝑠)) → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))} ⊆ 𝑥)
3216, 31eqsstrd 3969 . . . . . . . 8 ((𝑥 = (card‘ran 𝑓) ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (ran 𝑓𝐴 ∧ ∀𝑧𝐴𝑠 ∈ ran 𝑓 𝑧𝑠)) → (cf‘𝐴) ⊆ 𝑥)
33323expib 1122 . . . . . . 7 (𝑥 = (card‘ran 𝑓) → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (ran 𝑓𝐴 ∧ ∀𝑧𝐴𝑠 ∈ ran 𝑓 𝑧𝑠)) → (cf‘𝐴) ⊆ 𝑥))
34 sseq2 3961 . . . . . . 7 (𝑥 = (card‘ran 𝑓) → ((cf‘𝐴) ⊆ 𝑥 ↔ (cf‘𝐴) ⊆ (card‘ran 𝑓)))
3533, 34sylibd 239 . . . . . 6 (𝑥 = (card‘ran 𝑓) → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (ran 𝑓𝐴 ∧ ∀𝑧𝐴𝑠 ∈ ran 𝑓 𝑧𝑠)) → (cf‘𝐴) ⊆ (card‘ran 𝑓)))
3613, 35vtocle 3510 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (ran 𝑓𝐴 ∧ ∀𝑧𝐴𝑠 ∈ ran 𝑓 𝑧𝑠)) → (cf‘𝐴) ⊆ (card‘ran 𝑓))
3712, 36sylan2 593 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑓:𝐵𝐴 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤))) → (cf‘𝐴) ⊆ (card‘ran 𝑓))
38 cardidm 9849 . . . . . . 7 (card‘(card‘ran 𝑓)) = (card‘ran 𝑓)
39 onss 7718 . . . . . . . . . . . . . 14 (𝐴 ∈ On → 𝐴 ⊆ On)
401, 39sylan9ssr 3949 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝑓:𝐵𝐴) → ran 𝑓 ⊆ On)
41403adant2 1131 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑓:𝐵𝐴) → ran 𝑓 ⊆ On)
42 onssnum 9928 . . . . . . . . . . . 12 ((ran 𝑓 ∈ V ∧ ran 𝑓 ⊆ On) → ran 𝑓 ∈ dom card)
4318, 41, 42sylancr 587 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑓:𝐵𝐴) → ran 𝑓 ∈ dom card)
44 cardid2 9843 . . . . . . . . . . 11 (ran 𝑓 ∈ dom card → (card‘ran 𝑓) ≈ ran 𝑓)
4543, 44syl 17 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑓:𝐵𝐴) → (card‘ran 𝑓) ≈ ran 𝑓)
46 onenon 9839 . . . . . . . . . . . . 13 (𝐵 ∈ On → 𝐵 ∈ dom card)
47 dffn4 6741 . . . . . . . . . . . . . 14 (𝑓 Fn 𝐵𝑓:𝐵onto→ran 𝑓)
483, 47sylib 218 . . . . . . . . . . . . 13 (𝑓:𝐵𝐴𝑓:𝐵onto→ran 𝑓)
49 fodomnum 9945 . . . . . . . . . . . . 13 (𝐵 ∈ dom card → (𝑓:𝐵onto→ran 𝑓 → ran 𝑓𝐵))
5046, 48, 49syl2im 40 . . . . . . . . . . . 12 (𝐵 ∈ On → (𝑓:𝐵𝐴 → ran 𝑓𝐵))
5150imp 406 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝑓:𝐵𝐴) → ran 𝑓𝐵)
52513adant1 1130 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑓:𝐵𝐴) → ran 𝑓𝐵)
53 endomtr 8934 . . . . . . . . . 10 (((card‘ran 𝑓) ≈ ran 𝑓 ∧ ran 𝑓𝐵) → (card‘ran 𝑓) ≼ 𝐵)
5445, 52, 53syl2anc 584 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑓:𝐵𝐴) → (card‘ran 𝑓) ≼ 𝐵)
55 cardon 9834 . . . . . . . . . . . 12 (card‘ran 𝑓) ∈ On
56 onenon 9839 . . . . . . . . . . . 12 ((card‘ran 𝑓) ∈ On → (card‘ran 𝑓) ∈ dom card)
5755, 56ax-mp 5 . . . . . . . . . . 11 (card‘ran 𝑓) ∈ dom card
58 carddom2 9867 . . . . . . . . . . 11 (((card‘ran 𝑓) ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘(card‘ran 𝑓)) ⊆ (card‘𝐵) ↔ (card‘ran 𝑓) ≼ 𝐵))
5957, 46, 58sylancr 587 . . . . . . . . . 10 (𝐵 ∈ On → ((card‘(card‘ran 𝑓)) ⊆ (card‘𝐵) ↔ (card‘ran 𝑓) ≼ 𝐵))
60593ad2ant2 1134 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑓:𝐵𝐴) → ((card‘(card‘ran 𝑓)) ⊆ (card‘𝐵) ↔ (card‘ran 𝑓) ≼ 𝐵))
6154, 60mpbird 257 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑓:𝐵𝐴) → (card‘(card‘ran 𝑓)) ⊆ (card‘𝐵))
62 cardonle 9847 . . . . . . . . 9 (𝐵 ∈ On → (card‘𝐵) ⊆ 𝐵)
63623ad2ant2 1134 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑓:𝐵𝐴) → (card‘𝐵) ⊆ 𝐵)
6461, 63sstrd 3945 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑓:𝐵𝐴) → (card‘(card‘ran 𝑓)) ⊆ 𝐵)
6538, 64eqsstrrid 3974 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑓:𝐵𝐴) → (card‘ran 𝑓) ⊆ 𝐵)
66653expa 1118 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑓:𝐵𝐴) → (card‘ran 𝑓) ⊆ 𝐵)
6766adantrr 717 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑓:𝐵𝐴 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤))) → (card‘ran 𝑓) ⊆ 𝐵)
6837, 67sstrd 3945 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑓:𝐵𝐴 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤))) → (cf‘𝐴) ⊆ 𝐵)
6968ex 412 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑓:𝐵𝐴 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤)) → (cf‘𝐴) ⊆ 𝐵))
7069exlimdv 1934 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑓(𝑓:𝐵𝐴 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤)) → (cf‘𝐴) ⊆ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wral 3047  wrex 3056  Vcvv 3436  wss 3902   cint 4897   class class class wbr 5091  dom cdm 5616  ran crn 5617  Oncon0 6306   Fn wfn 6476  wf 6477  ontowfo 6479  cfv 6481  cen 8866  cdom 8867  cardccrd 9825  cfccf 9827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-card 9829  df-cf 9831  df-acn 9832
This theorem is referenced by:  cfsmolem  10158  cfcoflem  10160  cfcof  10162  inar1  10663
  Copyright terms: Public domain W3C validator