Step | Hyp | Ref
| Expression |
1 | | frn 6552 |
. . . . . . 7
⊢ (𝑓:𝐵⟶𝐴 → ran 𝑓 ⊆ 𝐴) |
2 | 1 | adantr 484 |
. . . . . 6
⊢ ((𝑓:𝐵⟶𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤)) → ran 𝑓 ⊆ 𝐴) |
3 | | ffn 6545 |
. . . . . . . . . . 11
⊢ (𝑓:𝐵⟶𝐴 → 𝑓 Fn 𝐵) |
4 | | fnfvelrn 6901 |
. . . . . . . . . . 11
⊢ ((𝑓 Fn 𝐵 ∧ 𝑤 ∈ 𝐵) → (𝑓‘𝑤) ∈ ran 𝑓) |
5 | 3, 4 | sylan 583 |
. . . . . . . . . 10
⊢ ((𝑓:𝐵⟶𝐴 ∧ 𝑤 ∈ 𝐵) → (𝑓‘𝑤) ∈ ran 𝑓) |
6 | | sseq2 3927 |
. . . . . . . . . . 11
⊢ (𝑠 = (𝑓‘𝑤) → (𝑧 ⊆ 𝑠 ↔ 𝑧 ⊆ (𝑓‘𝑤))) |
7 | 6 | rspcev 3537 |
. . . . . . . . . 10
⊢ (((𝑓‘𝑤) ∈ ran 𝑓 ∧ 𝑧 ⊆ (𝑓‘𝑤)) → ∃𝑠 ∈ ran 𝑓 𝑧 ⊆ 𝑠) |
8 | 5, 7 | sylan 583 |
. . . . . . . . 9
⊢ (((𝑓:𝐵⟶𝐴 ∧ 𝑤 ∈ 𝐵) ∧ 𝑧 ⊆ (𝑓‘𝑤)) → ∃𝑠 ∈ ran 𝑓 𝑧 ⊆ 𝑠) |
9 | 8 | rexlimdva2 3206 |
. . . . . . . 8
⊢ (𝑓:𝐵⟶𝐴 → (∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤) → ∃𝑠 ∈ ran 𝑓 𝑧 ⊆ 𝑠)) |
10 | 9 | ralimdv 3101 |
. . . . . . 7
⊢ (𝑓:𝐵⟶𝐴 → (∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤) → ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ ran 𝑓 𝑧 ⊆ 𝑠)) |
11 | 10 | imp 410 |
. . . . . 6
⊢ ((𝑓:𝐵⟶𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤)) → ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ ran 𝑓 𝑧 ⊆ 𝑠) |
12 | 2, 11 | jca 515 |
. . . . 5
⊢ ((𝑓:𝐵⟶𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤)) → (ran 𝑓 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ ran 𝑓 𝑧 ⊆ 𝑠)) |
13 | | fvex 6730 |
. . . . . 6
⊢
(card‘ran 𝑓)
∈ V |
14 | | cfval 9861 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ On →
(cf‘𝐴) = ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))}) |
15 | 14 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) →
(cf‘𝐴) = ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))}) |
16 | 15 | 3ad2ant2 1136 |
. . . . . . . . 9
⊢ ((𝑥 = (card‘ran 𝑓) ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (ran 𝑓 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ ran 𝑓 𝑧 ⊆ 𝑠)) → (cf‘𝐴) = ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))}) |
17 | | vex 3412 |
. . . . . . . . . . . . . 14
⊢ 𝑓 ∈ V |
18 | 17 | rnex 7690 |
. . . . . . . . . . . . 13
⊢ ran 𝑓 ∈ V |
19 | | fveq2 6717 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = ran 𝑓 → (card‘𝑦) = (card‘ran 𝑓)) |
20 | 19 | eqeq2d 2748 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = ran 𝑓 → (𝑥 = (card‘𝑦) ↔ 𝑥 = (card‘ran 𝑓))) |
21 | | sseq1 3926 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = ran 𝑓 → (𝑦 ⊆ 𝐴 ↔ ran 𝑓 ⊆ 𝐴)) |
22 | | rexeq 3320 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = ran 𝑓 → (∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ↔ ∃𝑠 ∈ ran 𝑓 𝑧 ⊆ 𝑠)) |
23 | 22 | ralbidv 3118 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = ran 𝑓 → (∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠 ↔ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ ran 𝑓 𝑧 ⊆ 𝑠)) |
24 | 21, 23 | anbi12d 634 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = ran 𝑓 → ((𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠) ↔ (ran 𝑓 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ ran 𝑓 𝑧 ⊆ 𝑠))) |
25 | 20, 24 | anbi12d 634 |
. . . . . . . . . . . . 13
⊢ (𝑦 = ran 𝑓 → ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠)) ↔ (𝑥 = (card‘ran 𝑓) ∧ (ran 𝑓 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ ran 𝑓 𝑧 ⊆ 𝑠)))) |
26 | 18, 25 | spcev 3521 |
. . . . . . . . . . . 12
⊢ ((𝑥 = (card‘ran 𝑓) ∧ (ran 𝑓 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ ran 𝑓 𝑧 ⊆ 𝑠)) → ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))) |
27 | | abid 2718 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))} ↔ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))) |
28 | 26, 27 | sylibr 237 |
. . . . . . . . . . 11
⊢ ((𝑥 = (card‘ran 𝑓) ∧ (ran 𝑓 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ ran 𝑓 𝑧 ⊆ 𝑠)) → 𝑥 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))}) |
29 | | intss1 4874 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))} → ∩
{𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))} ⊆ 𝑥) |
30 | 28, 29 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑥 = (card‘ran 𝑓) ∧ (ran 𝑓 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ ran 𝑓 𝑧 ⊆ 𝑠)) → ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))} ⊆ 𝑥) |
31 | 30 | 3adant2 1133 |
. . . . . . . . 9
⊢ ((𝑥 = (card‘ran 𝑓) ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (ran 𝑓 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ ran 𝑓 𝑧 ⊆ 𝑠)) → ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ 𝑦 𝑧 ⊆ 𝑠))} ⊆ 𝑥) |
32 | 16, 31 | eqsstrd 3939 |
. . . . . . . 8
⊢ ((𝑥 = (card‘ran 𝑓) ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (ran 𝑓 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ ran 𝑓 𝑧 ⊆ 𝑠)) → (cf‘𝐴) ⊆ 𝑥) |
33 | 32 | 3expib 1124 |
. . . . . . 7
⊢ (𝑥 = (card‘ran 𝑓) → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (ran 𝑓 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ ran 𝑓 𝑧 ⊆ 𝑠)) → (cf‘𝐴) ⊆ 𝑥)) |
34 | | sseq2 3927 |
. . . . . . 7
⊢ (𝑥 = (card‘ran 𝑓) → ((cf‘𝐴) ⊆ 𝑥 ↔ (cf‘𝐴) ⊆ (card‘ran 𝑓))) |
35 | 33, 34 | sylibd 242 |
. . . . . 6
⊢ (𝑥 = (card‘ran 𝑓) → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (ran 𝑓 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ ran 𝑓 𝑧 ⊆ 𝑠)) → (cf‘𝐴) ⊆ (card‘ran 𝑓))) |
36 | 13, 35 | vtocle 3500 |
. . . . 5
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (ran 𝑓 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑠 ∈ ran 𝑓 𝑧 ⊆ 𝑠)) → (cf‘𝐴) ⊆ (card‘ran 𝑓)) |
37 | 12, 36 | sylan2 596 |
. . . 4
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑓:𝐵⟶𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤))) → (cf‘𝐴) ⊆ (card‘ran 𝑓)) |
38 | | cardidm 9575 |
. . . . . . 7
⊢
(card‘(card‘ran 𝑓)) = (card‘ran 𝑓) |
39 | | onss 7568 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ On → 𝐴 ⊆ On) |
40 | 1, 39 | sylan9ssr 3915 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ On ∧ 𝑓:𝐵⟶𝐴) → ran 𝑓 ⊆ On) |
41 | 40 | 3adant2 1133 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑓:𝐵⟶𝐴) → ran 𝑓 ⊆ On) |
42 | | onssnum 9654 |
. . . . . . . . . . . 12
⊢ ((ran
𝑓 ∈ V ∧ ran 𝑓 ⊆ On) → ran 𝑓 ∈ dom
card) |
43 | 18, 41, 42 | sylancr 590 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑓:𝐵⟶𝐴) → ran 𝑓 ∈ dom card) |
44 | | cardid2 9569 |
. . . . . . . . . . 11
⊢ (ran
𝑓 ∈ dom card →
(card‘ran 𝑓) ≈
ran 𝑓) |
45 | 43, 44 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑓:𝐵⟶𝐴) → (card‘ran 𝑓) ≈ ran 𝑓) |
46 | | onenon 9565 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ On → 𝐵 ∈ dom
card) |
47 | | dffn4 6639 |
. . . . . . . . . . . . . 14
⊢ (𝑓 Fn 𝐵 ↔ 𝑓:𝐵–onto→ran 𝑓) |
48 | 3, 47 | sylib 221 |
. . . . . . . . . . . . 13
⊢ (𝑓:𝐵⟶𝐴 → 𝑓:𝐵–onto→ran 𝑓) |
49 | | fodomnum 9671 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ dom card → (𝑓:𝐵–onto→ran 𝑓 → ran 𝑓 ≼ 𝐵)) |
50 | 46, 48, 49 | syl2im 40 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ On → (𝑓:𝐵⟶𝐴 → ran 𝑓 ≼ 𝐵)) |
51 | 50 | imp 410 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ On ∧ 𝑓:𝐵⟶𝐴) → ran 𝑓 ≼ 𝐵) |
52 | 51 | 3adant1 1132 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑓:𝐵⟶𝐴) → ran 𝑓 ≼ 𝐵) |
53 | | endomtr 8686 |
. . . . . . . . . 10
⊢
(((card‘ran 𝑓)
≈ ran 𝑓 ∧ ran
𝑓 ≼ 𝐵) → (card‘ran 𝑓) ≼ 𝐵) |
54 | 45, 52, 53 | syl2anc 587 |
. . . . . . . . 9
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑓:𝐵⟶𝐴) → (card‘ran 𝑓) ≼ 𝐵) |
55 | | cardon 9560 |
. . . . . . . . . . . 12
⊢
(card‘ran 𝑓)
∈ On |
56 | | onenon 9565 |
. . . . . . . . . . . 12
⊢
((card‘ran 𝑓)
∈ On → (card‘ran 𝑓) ∈ dom card) |
57 | 55, 56 | ax-mp 5 |
. . . . . . . . . . 11
⊢
(card‘ran 𝑓)
∈ dom card |
58 | | carddom2 9593 |
. . . . . . . . . . 11
⊢
(((card‘ran 𝑓)
∈ dom card ∧ 𝐵
∈ dom card) → ((card‘(card‘ran 𝑓)) ⊆ (card‘𝐵) ↔ (card‘ran 𝑓) ≼ 𝐵)) |
59 | 57, 46, 58 | sylancr 590 |
. . . . . . . . . 10
⊢ (𝐵 ∈ On →
((card‘(card‘ran 𝑓)) ⊆ (card‘𝐵) ↔ (card‘ran 𝑓) ≼ 𝐵)) |
60 | 59 | 3ad2ant2 1136 |
. . . . . . . . 9
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑓:𝐵⟶𝐴) → ((card‘(card‘ran 𝑓)) ⊆ (card‘𝐵) ↔ (card‘ran 𝑓) ≼ 𝐵)) |
61 | 54, 60 | mpbird 260 |
. . . . . . . 8
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑓:𝐵⟶𝐴) → (card‘(card‘ran 𝑓)) ⊆ (card‘𝐵)) |
62 | | cardonle 9573 |
. . . . . . . . 9
⊢ (𝐵 ∈ On →
(card‘𝐵) ⊆
𝐵) |
63 | 62 | 3ad2ant2 1136 |
. . . . . . . 8
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑓:𝐵⟶𝐴) → (card‘𝐵) ⊆ 𝐵) |
64 | 61, 63 | sstrd 3911 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑓:𝐵⟶𝐴) → (card‘(card‘ran 𝑓)) ⊆ 𝐵) |
65 | 38, 64 | eqsstrrid 3950 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑓:𝐵⟶𝐴) → (card‘ran 𝑓) ⊆ 𝐵) |
66 | 65 | 3expa 1120 |
. . . . 5
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑓:𝐵⟶𝐴) → (card‘ran 𝑓) ⊆ 𝐵) |
67 | 66 | adantrr 717 |
. . . 4
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑓:𝐵⟶𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤))) → (card‘ran 𝑓) ⊆ 𝐵) |
68 | 37, 67 | sstrd 3911 |
. . 3
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑓:𝐵⟶𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤))) → (cf‘𝐴) ⊆ 𝐵) |
69 | 68 | ex 416 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑓:𝐵⟶𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤)) → (cf‘𝐴) ⊆ 𝐵)) |
70 | 69 | exlimdv 1941 |
1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑓(𝑓:𝐵⟶𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑧 ⊆ (𝑓‘𝑤)) → (cf‘𝐴) ⊆ 𝐵)) |