MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfflb Structured version   Visualization version   GIF version

Theorem cfflb 10300
Description: If there is a cofinal map from 𝐵 to 𝐴, then 𝐵 is at least (cf‘𝐴). This theorem and cff1 10299 motivate the picture of (cf‘𝐴) as the greatest lower bound of the domain of cofinal maps into 𝐴. (Contributed by Mario Carneiro, 28-Feb-2013.)
Assertion
Ref Expression
cfflb ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑓(𝑓:𝐵𝐴 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤)) → (cf‘𝐴) ⊆ 𝐵))
Distinct variable groups:   𝐴,𝑓,𝑤,𝑧   𝐵,𝑓,𝑤,𝑧

Proof of Theorem cfflb
Dummy variables 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frn 6742 . . . . . . 7 (𝑓:𝐵𝐴 → ran 𝑓𝐴)
21adantr 480 . . . . . 6 ((𝑓:𝐵𝐴 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤)) → ran 𝑓𝐴)
3 ffn 6735 . . . . . . . . . . 11 (𝑓:𝐵𝐴𝑓 Fn 𝐵)
4 fnfvelrn 7099 . . . . . . . . . . 11 ((𝑓 Fn 𝐵𝑤𝐵) → (𝑓𝑤) ∈ ran 𝑓)
53, 4sylan 580 . . . . . . . . . 10 ((𝑓:𝐵𝐴𝑤𝐵) → (𝑓𝑤) ∈ ran 𝑓)
6 sseq2 4009 . . . . . . . . . . 11 (𝑠 = (𝑓𝑤) → (𝑧𝑠𝑧 ⊆ (𝑓𝑤)))
76rspcev 3621 . . . . . . . . . 10 (((𝑓𝑤) ∈ ran 𝑓𝑧 ⊆ (𝑓𝑤)) → ∃𝑠 ∈ ran 𝑓 𝑧𝑠)
85, 7sylan 580 . . . . . . . . 9 (((𝑓:𝐵𝐴𝑤𝐵) ∧ 𝑧 ⊆ (𝑓𝑤)) → ∃𝑠 ∈ ran 𝑓 𝑧𝑠)
98rexlimdva2 3156 . . . . . . . 8 (𝑓:𝐵𝐴 → (∃𝑤𝐵 𝑧 ⊆ (𝑓𝑤) → ∃𝑠 ∈ ran 𝑓 𝑧𝑠))
109ralimdv 3168 . . . . . . 7 (𝑓:𝐵𝐴 → (∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤) → ∀𝑧𝐴𝑠 ∈ ran 𝑓 𝑧𝑠))
1110imp 406 . . . . . 6 ((𝑓:𝐵𝐴 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤)) → ∀𝑧𝐴𝑠 ∈ ran 𝑓 𝑧𝑠)
122, 11jca 511 . . . . 5 ((𝑓:𝐵𝐴 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤)) → (ran 𝑓𝐴 ∧ ∀𝑧𝐴𝑠 ∈ ran 𝑓 𝑧𝑠))
13 fvex 6918 . . . . . 6 (card‘ran 𝑓) ∈ V
14 cfval 10288 . . . . . . . . . . 11 (𝐴 ∈ On → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))})
1514adantr 480 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))})
16153ad2ant2 1134 . . . . . . . . 9 ((𝑥 = (card‘ran 𝑓) ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (ran 𝑓𝐴 ∧ ∀𝑧𝐴𝑠 ∈ ran 𝑓 𝑧𝑠)) → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))})
17 vex 3483 . . . . . . . . . . . . . 14 𝑓 ∈ V
1817rnex 7933 . . . . . . . . . . . . 13 ran 𝑓 ∈ V
19 fveq2 6905 . . . . . . . . . . . . . . 15 (𝑦 = ran 𝑓 → (card‘𝑦) = (card‘ran 𝑓))
2019eqeq2d 2747 . . . . . . . . . . . . . 14 (𝑦 = ran 𝑓 → (𝑥 = (card‘𝑦) ↔ 𝑥 = (card‘ran 𝑓)))
21 sseq1 4008 . . . . . . . . . . . . . . 15 (𝑦 = ran 𝑓 → (𝑦𝐴 ↔ ran 𝑓𝐴))
22 rexeq 3321 . . . . . . . . . . . . . . . 16 (𝑦 = ran 𝑓 → (∃𝑠𝑦 𝑧𝑠 ↔ ∃𝑠 ∈ ran 𝑓 𝑧𝑠))
2322ralbidv 3177 . . . . . . . . . . . . . . 15 (𝑦 = ran 𝑓 → (∀𝑧𝐴𝑠𝑦 𝑧𝑠 ↔ ∀𝑧𝐴𝑠 ∈ ran 𝑓 𝑧𝑠))
2421, 23anbi12d 632 . . . . . . . . . . . . . 14 (𝑦 = ran 𝑓 → ((𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠) ↔ (ran 𝑓𝐴 ∧ ∀𝑧𝐴𝑠 ∈ ran 𝑓 𝑧𝑠)))
2520, 24anbi12d 632 . . . . . . . . . . . . 13 (𝑦 = ran 𝑓 → ((𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠)) ↔ (𝑥 = (card‘ran 𝑓) ∧ (ran 𝑓𝐴 ∧ ∀𝑧𝐴𝑠 ∈ ran 𝑓 𝑧𝑠))))
2618, 25spcev 3605 . . . . . . . . . . . 12 ((𝑥 = (card‘ran 𝑓) ∧ (ran 𝑓𝐴 ∧ ∀𝑧𝐴𝑠 ∈ ran 𝑓 𝑧𝑠)) → ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠)))
27 abid 2717 . . . . . . . . . . . 12 (𝑥 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))} ↔ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠)))
2826, 27sylibr 234 . . . . . . . . . . 11 ((𝑥 = (card‘ran 𝑓) ∧ (ran 𝑓𝐴 ∧ ∀𝑧𝐴𝑠 ∈ ran 𝑓 𝑧𝑠)) → 𝑥 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))})
29 intss1 4962 . . . . . . . . . . 11 (𝑥 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))} → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))} ⊆ 𝑥)
3028, 29syl 17 . . . . . . . . . 10 ((𝑥 = (card‘ran 𝑓) ∧ (ran 𝑓𝐴 ∧ ∀𝑧𝐴𝑠 ∈ ran 𝑓 𝑧𝑠)) → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))} ⊆ 𝑥)
31303adant2 1131 . . . . . . . . 9 ((𝑥 = (card‘ran 𝑓) ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (ran 𝑓𝐴 ∧ ∀𝑧𝐴𝑠 ∈ ran 𝑓 𝑧𝑠)) → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))} ⊆ 𝑥)
3216, 31eqsstrd 4017 . . . . . . . 8 ((𝑥 = (card‘ran 𝑓) ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (ran 𝑓𝐴 ∧ ∀𝑧𝐴𝑠 ∈ ran 𝑓 𝑧𝑠)) → (cf‘𝐴) ⊆ 𝑥)
33323expib 1122 . . . . . . 7 (𝑥 = (card‘ran 𝑓) → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (ran 𝑓𝐴 ∧ ∀𝑧𝐴𝑠 ∈ ran 𝑓 𝑧𝑠)) → (cf‘𝐴) ⊆ 𝑥))
34 sseq2 4009 . . . . . . 7 (𝑥 = (card‘ran 𝑓) → ((cf‘𝐴) ⊆ 𝑥 ↔ (cf‘𝐴) ⊆ (card‘ran 𝑓)))
3533, 34sylibd 239 . . . . . 6 (𝑥 = (card‘ran 𝑓) → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (ran 𝑓𝐴 ∧ ∀𝑧𝐴𝑠 ∈ ran 𝑓 𝑧𝑠)) → (cf‘𝐴) ⊆ (card‘ran 𝑓)))
3613, 35vtocle 3554 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (ran 𝑓𝐴 ∧ ∀𝑧𝐴𝑠 ∈ ran 𝑓 𝑧𝑠)) → (cf‘𝐴) ⊆ (card‘ran 𝑓))
3712, 36sylan2 593 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑓:𝐵𝐴 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤))) → (cf‘𝐴) ⊆ (card‘ran 𝑓))
38 cardidm 10000 . . . . . . 7 (card‘(card‘ran 𝑓)) = (card‘ran 𝑓)
39 onss 7806 . . . . . . . . . . . . . 14 (𝐴 ∈ On → 𝐴 ⊆ On)
401, 39sylan9ssr 3997 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝑓:𝐵𝐴) → ran 𝑓 ⊆ On)
41403adant2 1131 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑓:𝐵𝐴) → ran 𝑓 ⊆ On)
42 onssnum 10081 . . . . . . . . . . . 12 ((ran 𝑓 ∈ V ∧ ran 𝑓 ⊆ On) → ran 𝑓 ∈ dom card)
4318, 41, 42sylancr 587 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑓:𝐵𝐴) → ran 𝑓 ∈ dom card)
44 cardid2 9994 . . . . . . . . . . 11 (ran 𝑓 ∈ dom card → (card‘ran 𝑓) ≈ ran 𝑓)
4543, 44syl 17 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑓:𝐵𝐴) → (card‘ran 𝑓) ≈ ran 𝑓)
46 onenon 9990 . . . . . . . . . . . . 13 (𝐵 ∈ On → 𝐵 ∈ dom card)
47 dffn4 6825 . . . . . . . . . . . . . 14 (𝑓 Fn 𝐵𝑓:𝐵onto→ran 𝑓)
483, 47sylib 218 . . . . . . . . . . . . 13 (𝑓:𝐵𝐴𝑓:𝐵onto→ran 𝑓)
49 fodomnum 10098 . . . . . . . . . . . . 13 (𝐵 ∈ dom card → (𝑓:𝐵onto→ran 𝑓 → ran 𝑓𝐵))
5046, 48, 49syl2im 40 . . . . . . . . . . . 12 (𝐵 ∈ On → (𝑓:𝐵𝐴 → ran 𝑓𝐵))
5150imp 406 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝑓:𝐵𝐴) → ran 𝑓𝐵)
52513adant1 1130 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑓:𝐵𝐴) → ran 𝑓𝐵)
53 endomtr 9053 . . . . . . . . . 10 (((card‘ran 𝑓) ≈ ran 𝑓 ∧ ran 𝑓𝐵) → (card‘ran 𝑓) ≼ 𝐵)
5445, 52, 53syl2anc 584 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑓:𝐵𝐴) → (card‘ran 𝑓) ≼ 𝐵)
55 cardon 9985 . . . . . . . . . . . 12 (card‘ran 𝑓) ∈ On
56 onenon 9990 . . . . . . . . . . . 12 ((card‘ran 𝑓) ∈ On → (card‘ran 𝑓) ∈ dom card)
5755, 56ax-mp 5 . . . . . . . . . . 11 (card‘ran 𝑓) ∈ dom card
58 carddom2 10018 . . . . . . . . . . 11 (((card‘ran 𝑓) ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘(card‘ran 𝑓)) ⊆ (card‘𝐵) ↔ (card‘ran 𝑓) ≼ 𝐵))
5957, 46, 58sylancr 587 . . . . . . . . . 10 (𝐵 ∈ On → ((card‘(card‘ran 𝑓)) ⊆ (card‘𝐵) ↔ (card‘ran 𝑓) ≼ 𝐵))
60593ad2ant2 1134 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑓:𝐵𝐴) → ((card‘(card‘ran 𝑓)) ⊆ (card‘𝐵) ↔ (card‘ran 𝑓) ≼ 𝐵))
6154, 60mpbird 257 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑓:𝐵𝐴) → (card‘(card‘ran 𝑓)) ⊆ (card‘𝐵))
62 cardonle 9998 . . . . . . . . 9 (𝐵 ∈ On → (card‘𝐵) ⊆ 𝐵)
63623ad2ant2 1134 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑓:𝐵𝐴) → (card‘𝐵) ⊆ 𝐵)
6461, 63sstrd 3993 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑓:𝐵𝐴) → (card‘(card‘ran 𝑓)) ⊆ 𝐵)
6538, 64eqsstrrid 4022 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑓:𝐵𝐴) → (card‘ran 𝑓) ⊆ 𝐵)
66653expa 1118 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑓:𝐵𝐴) → (card‘ran 𝑓) ⊆ 𝐵)
6766adantrr 717 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑓:𝐵𝐴 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤))) → (card‘ran 𝑓) ⊆ 𝐵)
6837, 67sstrd 3993 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑓:𝐵𝐴 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤))) → (cf‘𝐴) ⊆ 𝐵)
6968ex 412 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑓:𝐵𝐴 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤)) → (cf‘𝐴) ⊆ 𝐵))
7069exlimdv 1932 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑓(𝑓:𝐵𝐴 ∧ ∀𝑧𝐴𝑤𝐵 𝑧 ⊆ (𝑓𝑤)) → (cf‘𝐴) ⊆ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wex 1778  wcel 2107  {cab 2713  wral 3060  wrex 3069  Vcvv 3479  wss 3950   cint 4945   class class class wbr 5142  dom cdm 5684  ran crn 5685  Oncon0 6383   Fn wfn 6555  wf 6556  ontowfo 6558  cfv 6560  cen 8983  cdom 8984  cardccrd 9976  cfccf 9978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-card 9980  df-cf 9982  df-acn 9983
This theorem is referenced by:  cfsmolem  10311  cfcoflem  10313  cfcof  10315  inar1  10816
  Copyright terms: Public domain W3C validator