Users' Mathboxes Mathbox for Ender Ting < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tworepnotupword Structured version   Visualization version   GIF version

Theorem tworepnotupword 45199
Description: Concatenation of identical singletons is never an increasing sequence. (Contributed by Ender Ting, 22-Nov-2024.)
Hypothesis
Ref Expression
tworepnotupword.1 𝐴 ∈ V
Assertion
Ref Expression
tworepnotupword ¬ (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) ∈ UpWord 𝑆

Proof of Theorem tworepnotupword
Dummy variables 𝑘 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7395 . 2 (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) ∈ V
2 c0ex 11156 . . . . . . . 8 0 ∈ V
32isseti 3463 . . . . . . 7 𝑘 𝑘 = 0
4 0z 12517 . . . . . . . . . . . 12 0 ∈ ℤ
5 ccat2s1len 14518 . . . . . . . . . . . . . . 15 (♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) = 2
65oveq1i 7372 . . . . . . . . . . . . . 14 ((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1) = (2 − 1)
7 2m1e1 12286 . . . . . . . . . . . . . 14 (2 − 1) = 1
86, 7eqtri 2765 . . . . . . . . . . . . 13 ((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1) = 1
9 1z 12540 . . . . . . . . . . . . 13 1 ∈ ℤ
108, 9eqeltri 2834 . . . . . . . . . . . 12 ((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1) ∈ ℤ
11 0lt1 11684 . . . . . . . . . . . . 13 0 < 1
1211, 8breqtrri 5137 . . . . . . . . . . . 12 0 < ((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1)
13 fzolb 13585 . . . . . . . . . . . 12 (0 ∈ (0..^((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1)) ↔ (0 ∈ ℤ ∧ ((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1) ∈ ℤ ∧ 0 < ((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1)))
144, 10, 12, 13mpbir3an 1342 . . . . . . . . . . 11 0 ∈ (0..^((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1))
15 eleq1a 2833 . . . . . . . . . . 11 (0 ∈ (0..^((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1)) → (𝑘 = 0 → 𝑘 ∈ (0..^((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1))))
1614, 15ax-mp 5 . . . . . . . . . 10 (𝑘 = 0 → 𝑘 ∈ (0..^((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1)))
17 fveq2 6847 . . . . . . . . . . . . 13 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → (♯‘𝑏) = (♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)))
1817oveq1d 7377 . . . . . . . . . . . 12 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → ((♯‘𝑏) − 1) = ((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1))
1918oveq2d 7378 . . . . . . . . . . 11 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → (0..^((♯‘𝑏) − 1)) = (0..^((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1)))
2019eleq2d 2824 . . . . . . . . . 10 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → (𝑘 ∈ (0..^((♯‘𝑏) − 1)) ↔ 𝑘 ∈ (0..^((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1))))
2116, 20syl5ibr 246 . . . . . . . . 9 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → (𝑘 = 0 → 𝑘 ∈ (0..^((♯‘𝑏) − 1))))
22 et-ltneverrefl 45186 . . . . . . . . . . 11 ¬ 𝐴 < 𝐴
23 fveq1 6846 . . . . . . . . . . . . 13 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → (𝑏‘0) = ((⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)‘0))
24 tworepnotupword.1 . . . . . . . . . . . . . 14 𝐴 ∈ V
25 ccat2s1p1 14524 . . . . . . . . . . . . . 14 (𝐴 ∈ V → ((⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)‘0) = 𝐴)
2624, 25ax-mp 5 . . . . . . . . . . . . 13 ((⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)‘0) = 𝐴
2723, 26eqtrdi 2793 . . . . . . . . . . . 12 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → (𝑏‘0) = 𝐴)
28 fveq1 6846 . . . . . . . . . . . . 13 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → (𝑏‘(0 + 1)) = ((⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)‘(0 + 1)))
29 1e0p1 12667 . . . . . . . . . . . . . . 15 1 = (0 + 1)
3029fveq2i 6850 . . . . . . . . . . . . . 14 ((⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)‘1) = ((⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)‘(0 + 1))
31 ccat2s1p2 14525 . . . . . . . . . . . . . . 15 (𝐴 ∈ V → ((⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)‘1) = 𝐴)
3224, 31ax-mp 5 . . . . . . . . . . . . . 14 ((⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)‘1) = 𝐴
3330, 32eqtr3i 2767 . . . . . . . . . . . . 13 ((⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)‘(0 + 1)) = 𝐴
3428, 33eqtrdi 2793 . . . . . . . . . . . 12 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → (𝑏‘(0 + 1)) = 𝐴)
3527, 34breq12d 5123 . . . . . . . . . . 11 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → ((𝑏‘0) < (𝑏‘(0 + 1)) ↔ 𝐴 < 𝐴))
3622, 35mtbiri 327 . . . . . . . . . 10 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → ¬ (𝑏‘0) < (𝑏‘(0 + 1)))
37 fveq2 6847 . . . . . . . . . . . . 13 (𝑘 = 0 → (𝑏𝑘) = (𝑏‘0))
38 fvoveq1 7385 . . . . . . . . . . . . 13 (𝑘 = 0 → (𝑏‘(𝑘 + 1)) = (𝑏‘(0 + 1)))
3937, 38breq12d 5123 . . . . . . . . . . . 12 (𝑘 = 0 → ((𝑏𝑘) < (𝑏‘(𝑘 + 1)) ↔ (𝑏‘0) < (𝑏‘(0 + 1))))
4039biimpd 228 . . . . . . . . . . 11 (𝑘 = 0 → ((𝑏𝑘) < (𝑏‘(𝑘 + 1)) → (𝑏‘0) < (𝑏‘(0 + 1))))
4140con3d 152 . . . . . . . . . 10 (𝑘 = 0 → (¬ (𝑏‘0) < (𝑏‘(0 + 1)) → ¬ (𝑏𝑘) < (𝑏‘(𝑘 + 1))))
4236, 41syl5com 31 . . . . . . . . 9 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → (𝑘 = 0 → ¬ (𝑏𝑘) < (𝑏‘(𝑘 + 1))))
4321, 42jcad 514 . . . . . . . 8 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → (𝑘 = 0 → (𝑘 ∈ (0..^((♯‘𝑏) − 1)) ∧ ¬ (𝑏𝑘) < (𝑏‘(𝑘 + 1)))))
4443eximdv 1921 . . . . . . 7 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → (∃𝑘 𝑘 = 0 → ∃𝑘(𝑘 ∈ (0..^((♯‘𝑏) − 1)) ∧ ¬ (𝑏𝑘) < (𝑏‘(𝑘 + 1)))))
453, 44mpi 20 . . . . . 6 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → ∃𝑘(𝑘 ∈ (0..^((♯‘𝑏) − 1)) ∧ ¬ (𝑏𝑘) < (𝑏‘(𝑘 + 1))))
46 nfre1 3271 . . . . . . 7 𝑘𝑘 ∈ (0..^((♯‘𝑏) − 1)) ¬ (𝑏𝑘) < (𝑏‘(𝑘 + 1))
47 rspe 3235 . . . . . . 7 ((𝑘 ∈ (0..^((♯‘𝑏) − 1)) ∧ ¬ (𝑏𝑘) < (𝑏‘(𝑘 + 1))) → ∃𝑘 ∈ (0..^((♯‘𝑏) − 1)) ¬ (𝑏𝑘) < (𝑏‘(𝑘 + 1)))
4846, 47exlimi 2211 . . . . . 6 (∃𝑘(𝑘 ∈ (0..^((♯‘𝑏) − 1)) ∧ ¬ (𝑏𝑘) < (𝑏‘(𝑘 + 1))) → ∃𝑘 ∈ (0..^((♯‘𝑏) − 1)) ¬ (𝑏𝑘) < (𝑏‘(𝑘 + 1)))
4945, 48syl 17 . . . . 5 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → ∃𝑘 ∈ (0..^((♯‘𝑏) − 1)) ¬ (𝑏𝑘) < (𝑏‘(𝑘 + 1)))
50 rexnal 3104 . . . . 5 (∃𝑘 ∈ (0..^((♯‘𝑏) − 1)) ¬ (𝑏𝑘) < (𝑏‘(𝑘 + 1)) ↔ ¬ ∀𝑘 ∈ (0..^((♯‘𝑏) − 1))(𝑏𝑘) < (𝑏‘(𝑘 + 1)))
5149, 50sylib 217 . . . 4 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → ¬ ∀𝑘 ∈ (0..^((♯‘𝑏) − 1))(𝑏𝑘) < (𝑏‘(𝑘 + 1)))
52 df-upword 45192 . . . . . 6 UpWord 𝑆 = {𝑏 ∣ (𝑏 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑏) − 1))(𝑏𝑘) < (𝑏‘(𝑘 + 1)))}
5352eqabi 2882 . . . . 5 (𝑏 ∈ UpWord 𝑆 ↔ (𝑏 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑏) − 1))(𝑏𝑘) < (𝑏‘(𝑘 + 1))))
5453simprbi 498 . . . 4 (𝑏 ∈ UpWord 𝑆 → ∀𝑘 ∈ (0..^((♯‘𝑏) − 1))(𝑏𝑘) < (𝑏‘(𝑘 + 1)))
5551, 54nsyl 140 . . 3 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → ¬ 𝑏 ∈ UpWord 𝑆)
56 eleq1 2826 . . 3 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → (𝑏 ∈ UpWord 𝑆 ↔ (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) ∈ UpWord 𝑆))
5755, 56mtbid 324 . 2 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → ¬ (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) ∈ UpWord 𝑆)
581, 57vtocle 3547 1 ¬ (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) ∈ UpWord 𝑆
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1542  wex 1782  wcel 2107  wral 3065  wrex 3074  Vcvv 3448   class class class wbr 5110  cfv 6501  (class class class)co 7362  0cc0 11058  1c1 11059   + caddc 11061   < clt 11196  cmin 11392  2c2 12215  cz 12506  ..^cfzo 13574  chash 14237  Word cword 14409   ++ cconcat 14465  ⟨“cs1 14490  UpWord cupword 45191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-nn 12161  df-2 12223  df-n0 12421  df-z 12507  df-uz 12771  df-fz 13432  df-fzo 13575  df-hash 14238  df-word 14410  df-concat 14466  df-s1 14491  df-upword 45192
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator