Users' Mathboxes Mathbox for Ender Ting < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tworepnotupword Structured version   Visualization version   GIF version

Theorem tworepnotupword 45586
Description: Concatenation of identical singletons is never an increasing sequence. (Contributed by Ender Ting, 22-Nov-2024.)
Hypothesis
Ref Expression
tworepnotupword.1 𝐴 ∈ V
Assertion
Ref Expression
tworepnotupword ¬ (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) ∈ UpWord 𝑆

Proof of Theorem tworepnotupword
Dummy variables 𝑘 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7438 . 2 (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) ∈ V
2 c0ex 11204 . . . . . . . 8 0 ∈ V
32isseti 3489 . . . . . . 7 𝑘 𝑘 = 0
4 0z 12565 . . . . . . . . . . . 12 0 ∈ ℤ
5 ccat2s1len 14569 . . . . . . . . . . . . . . 15 (♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) = 2
65oveq1i 7415 . . . . . . . . . . . . . 14 ((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1) = (2 − 1)
7 2m1e1 12334 . . . . . . . . . . . . . 14 (2 − 1) = 1
86, 7eqtri 2760 . . . . . . . . . . . . 13 ((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1) = 1
9 1z 12588 . . . . . . . . . . . . 13 1 ∈ ℤ
108, 9eqeltri 2829 . . . . . . . . . . . 12 ((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1) ∈ ℤ
11 0lt1 11732 . . . . . . . . . . . . 13 0 < 1
1211, 8breqtrri 5174 . . . . . . . . . . . 12 0 < ((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1)
13 fzolb 13634 . . . . . . . . . . . 12 (0 ∈ (0..^((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1)) ↔ (0 ∈ ℤ ∧ ((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1) ∈ ℤ ∧ 0 < ((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1)))
144, 10, 12, 13mpbir3an 1341 . . . . . . . . . . 11 0 ∈ (0..^((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1))
15 eleq1a 2828 . . . . . . . . . . 11 (0 ∈ (0..^((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1)) → (𝑘 = 0 → 𝑘 ∈ (0..^((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1))))
1614, 15ax-mp 5 . . . . . . . . . 10 (𝑘 = 0 → 𝑘 ∈ (0..^((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1)))
17 fveq2 6888 . . . . . . . . . . . . 13 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → (♯‘𝑏) = (♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)))
1817oveq1d 7420 . . . . . . . . . . . 12 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → ((♯‘𝑏) − 1) = ((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1))
1918oveq2d 7421 . . . . . . . . . . 11 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → (0..^((♯‘𝑏) − 1)) = (0..^((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1)))
2019eleq2d 2819 . . . . . . . . . 10 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → (𝑘 ∈ (0..^((♯‘𝑏) − 1)) ↔ 𝑘 ∈ (0..^((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1))))
2116, 20imbitrrid 245 . . . . . . . . 9 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → (𝑘 = 0 → 𝑘 ∈ (0..^((♯‘𝑏) − 1))))
22 et-ltneverrefl 45573 . . . . . . . . . . 11 ¬ 𝐴 < 𝐴
23 fveq1 6887 . . . . . . . . . . . . 13 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → (𝑏‘0) = ((⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)‘0))
24 tworepnotupword.1 . . . . . . . . . . . . . 14 𝐴 ∈ V
25 ccat2s1p1 14575 . . . . . . . . . . . . . 14 (𝐴 ∈ V → ((⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)‘0) = 𝐴)
2624, 25ax-mp 5 . . . . . . . . . . . . 13 ((⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)‘0) = 𝐴
2723, 26eqtrdi 2788 . . . . . . . . . . . 12 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → (𝑏‘0) = 𝐴)
28 fveq1 6887 . . . . . . . . . . . . 13 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → (𝑏‘(0 + 1)) = ((⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)‘(0 + 1)))
29 1e0p1 12715 . . . . . . . . . . . . . . 15 1 = (0 + 1)
3029fveq2i 6891 . . . . . . . . . . . . . 14 ((⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)‘1) = ((⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)‘(0 + 1))
31 ccat2s1p2 14576 . . . . . . . . . . . . . . 15 (𝐴 ∈ V → ((⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)‘1) = 𝐴)
3224, 31ax-mp 5 . . . . . . . . . . . . . 14 ((⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)‘1) = 𝐴
3330, 32eqtr3i 2762 . . . . . . . . . . . . 13 ((⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)‘(0 + 1)) = 𝐴
3428, 33eqtrdi 2788 . . . . . . . . . . . 12 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → (𝑏‘(0 + 1)) = 𝐴)
3527, 34breq12d 5160 . . . . . . . . . . 11 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → ((𝑏‘0) < (𝑏‘(0 + 1)) ↔ 𝐴 < 𝐴))
3622, 35mtbiri 326 . . . . . . . . . 10 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → ¬ (𝑏‘0) < (𝑏‘(0 + 1)))
37 fveq2 6888 . . . . . . . . . . . . 13 (𝑘 = 0 → (𝑏𝑘) = (𝑏‘0))
38 fvoveq1 7428 . . . . . . . . . . . . 13 (𝑘 = 0 → (𝑏‘(𝑘 + 1)) = (𝑏‘(0 + 1)))
3937, 38breq12d 5160 . . . . . . . . . . . 12 (𝑘 = 0 → ((𝑏𝑘) < (𝑏‘(𝑘 + 1)) ↔ (𝑏‘0) < (𝑏‘(0 + 1))))
4039biimpd 228 . . . . . . . . . . 11 (𝑘 = 0 → ((𝑏𝑘) < (𝑏‘(𝑘 + 1)) → (𝑏‘0) < (𝑏‘(0 + 1))))
4140con3d 152 . . . . . . . . . 10 (𝑘 = 0 → (¬ (𝑏‘0) < (𝑏‘(0 + 1)) → ¬ (𝑏𝑘) < (𝑏‘(𝑘 + 1))))
4236, 41syl5com 31 . . . . . . . . 9 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → (𝑘 = 0 → ¬ (𝑏𝑘) < (𝑏‘(𝑘 + 1))))
4321, 42jcad 513 . . . . . . . 8 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → (𝑘 = 0 → (𝑘 ∈ (0..^((♯‘𝑏) − 1)) ∧ ¬ (𝑏𝑘) < (𝑏‘(𝑘 + 1)))))
4443eximdv 1920 . . . . . . 7 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → (∃𝑘 𝑘 = 0 → ∃𝑘(𝑘 ∈ (0..^((♯‘𝑏) − 1)) ∧ ¬ (𝑏𝑘) < (𝑏‘(𝑘 + 1)))))
453, 44mpi 20 . . . . . 6 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → ∃𝑘(𝑘 ∈ (0..^((♯‘𝑏) − 1)) ∧ ¬ (𝑏𝑘) < (𝑏‘(𝑘 + 1))))
46 nfre1 3282 . . . . . . 7 𝑘𝑘 ∈ (0..^((♯‘𝑏) − 1)) ¬ (𝑏𝑘) < (𝑏‘(𝑘 + 1))
47 rspe 3246 . . . . . . 7 ((𝑘 ∈ (0..^((♯‘𝑏) − 1)) ∧ ¬ (𝑏𝑘) < (𝑏‘(𝑘 + 1))) → ∃𝑘 ∈ (0..^((♯‘𝑏) − 1)) ¬ (𝑏𝑘) < (𝑏‘(𝑘 + 1)))
4846, 47exlimi 2210 . . . . . 6 (∃𝑘(𝑘 ∈ (0..^((♯‘𝑏) − 1)) ∧ ¬ (𝑏𝑘) < (𝑏‘(𝑘 + 1))) → ∃𝑘 ∈ (0..^((♯‘𝑏) − 1)) ¬ (𝑏𝑘) < (𝑏‘(𝑘 + 1)))
4945, 48syl 17 . . . . 5 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → ∃𝑘 ∈ (0..^((♯‘𝑏) − 1)) ¬ (𝑏𝑘) < (𝑏‘(𝑘 + 1)))
50 rexnal 3100 . . . . 5 (∃𝑘 ∈ (0..^((♯‘𝑏) − 1)) ¬ (𝑏𝑘) < (𝑏‘(𝑘 + 1)) ↔ ¬ ∀𝑘 ∈ (0..^((♯‘𝑏) − 1))(𝑏𝑘) < (𝑏‘(𝑘 + 1)))
5149, 50sylib 217 . . . 4 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → ¬ ∀𝑘 ∈ (0..^((♯‘𝑏) − 1))(𝑏𝑘) < (𝑏‘(𝑘 + 1)))
52 df-upword 45579 . . . . . 6 UpWord 𝑆 = {𝑏 ∣ (𝑏 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑏) − 1))(𝑏𝑘) < (𝑏‘(𝑘 + 1)))}
5352eqabri 2877 . . . . 5 (𝑏 ∈ UpWord 𝑆 ↔ (𝑏 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑏) − 1))(𝑏𝑘) < (𝑏‘(𝑘 + 1))))
5453simprbi 497 . . . 4 (𝑏 ∈ UpWord 𝑆 → ∀𝑘 ∈ (0..^((♯‘𝑏) − 1))(𝑏𝑘) < (𝑏‘(𝑘 + 1)))
5551, 54nsyl 140 . . 3 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → ¬ 𝑏 ∈ UpWord 𝑆)
56 eleq1 2821 . . 3 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → (𝑏 ∈ UpWord 𝑆 ↔ (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) ∈ UpWord 𝑆))
5755, 56mtbid 323 . 2 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → ¬ (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) ∈ UpWord 𝑆)
581, 57vtocle 3575 1 ¬ (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) ∈ UpWord 𝑆
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wex 1781  wcel 2106  wral 3061  wrex 3070  Vcvv 3474   class class class wbr 5147  cfv 6540  (class class class)co 7405  0cc0 11106  1c1 11107   + caddc 11109   < clt 11244  cmin 11440  2c2 12263  cz 12554  ..^cfzo 13623  chash 14286  Word cword 14460   ++ cconcat 14516  ⟨“cs1 14541  UpWord cupword 45578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-concat 14517  df-s1 14542  df-upword 45579
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator