Users' Mathboxes Mathbox for Ender Ting < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tworepnotupword Structured version   Visualization version   GIF version

Theorem tworepnotupword 46901
Description: Concatenation of identical singletons is never an increasing sequence. (Contributed by Ender Ting, 22-Nov-2024.)
Hypothesis
Ref Expression
tworepnotupword.1 𝐴 ∈ V
Assertion
Ref Expression
tworepnotupword ¬ (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) ∈ UpWord 𝑆

Proof of Theorem tworepnotupword
Dummy variables 𝑘 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7464 . 2 (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) ∈ V
2 c0ex 11255 . . . . . . . 8 0 ∈ V
32isseti 3498 . . . . . . 7 𝑘 𝑘 = 0
4 0z 12624 . . . . . . . . . . . 12 0 ∈ ℤ
5 ccat2s1len 14661 . . . . . . . . . . . . . . 15 (♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) = 2
65oveq1i 7441 . . . . . . . . . . . . . 14 ((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1) = (2 − 1)
7 2m1e1 12392 . . . . . . . . . . . . . 14 (2 − 1) = 1
86, 7eqtri 2765 . . . . . . . . . . . . 13 ((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1) = 1
9 1z 12647 . . . . . . . . . . . . 13 1 ∈ ℤ
108, 9eqeltri 2837 . . . . . . . . . . . 12 ((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1) ∈ ℤ
11 0lt1 11785 . . . . . . . . . . . . 13 0 < 1
1211, 8breqtrri 5170 . . . . . . . . . . . 12 0 < ((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1)
13 fzolb 13705 . . . . . . . . . . . 12 (0 ∈ (0..^((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1)) ↔ (0 ∈ ℤ ∧ ((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1) ∈ ℤ ∧ 0 < ((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1)))
144, 10, 12, 13mpbir3an 1342 . . . . . . . . . . 11 0 ∈ (0..^((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1))
15 eleq1a 2836 . . . . . . . . . . 11 (0 ∈ (0..^((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1)) → (𝑘 = 0 → 𝑘 ∈ (0..^((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1))))
1614, 15ax-mp 5 . . . . . . . . . 10 (𝑘 = 0 → 𝑘 ∈ (0..^((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1)))
17 fveq2 6906 . . . . . . . . . . . . 13 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → (♯‘𝑏) = (♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)))
1817oveq1d 7446 . . . . . . . . . . . 12 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → ((♯‘𝑏) − 1) = ((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1))
1918oveq2d 7447 . . . . . . . . . . 11 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → (0..^((♯‘𝑏) − 1)) = (0..^((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1)))
2019eleq2d 2827 . . . . . . . . . 10 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → (𝑘 ∈ (0..^((♯‘𝑏) − 1)) ↔ 𝑘 ∈ (0..^((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1))))
2116, 20imbitrrid 246 . . . . . . . . 9 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → (𝑘 = 0 → 𝑘 ∈ (0..^((♯‘𝑏) − 1))))
22 et-ltneverrefl 46886 . . . . . . . . . . 11 ¬ 𝐴 < 𝐴
23 fveq1 6905 . . . . . . . . . . . . 13 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → (𝑏‘0) = ((⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)‘0))
24 tworepnotupword.1 . . . . . . . . . . . . . 14 𝐴 ∈ V
25 ccat2s1p1 14667 . . . . . . . . . . . . . 14 (𝐴 ∈ V → ((⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)‘0) = 𝐴)
2624, 25ax-mp 5 . . . . . . . . . . . . 13 ((⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)‘0) = 𝐴
2723, 26eqtrdi 2793 . . . . . . . . . . . 12 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → (𝑏‘0) = 𝐴)
28 fveq1 6905 . . . . . . . . . . . . 13 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → (𝑏‘(0 + 1)) = ((⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)‘(0 + 1)))
29 1e0p1 12775 . . . . . . . . . . . . . . 15 1 = (0 + 1)
3029fveq2i 6909 . . . . . . . . . . . . . 14 ((⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)‘1) = ((⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)‘(0 + 1))
31 ccat2s1p2 14668 . . . . . . . . . . . . . . 15 (𝐴 ∈ V → ((⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)‘1) = 𝐴)
3224, 31ax-mp 5 . . . . . . . . . . . . . 14 ((⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)‘1) = 𝐴
3330, 32eqtr3i 2767 . . . . . . . . . . . . 13 ((⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)‘(0 + 1)) = 𝐴
3428, 33eqtrdi 2793 . . . . . . . . . . . 12 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → (𝑏‘(0 + 1)) = 𝐴)
3527, 34breq12d 5156 . . . . . . . . . . 11 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → ((𝑏‘0) < (𝑏‘(0 + 1)) ↔ 𝐴 < 𝐴))
3622, 35mtbiri 327 . . . . . . . . . 10 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → ¬ (𝑏‘0) < (𝑏‘(0 + 1)))
37 fveq2 6906 . . . . . . . . . . . . 13 (𝑘 = 0 → (𝑏𝑘) = (𝑏‘0))
38 fvoveq1 7454 . . . . . . . . . . . . 13 (𝑘 = 0 → (𝑏‘(𝑘 + 1)) = (𝑏‘(0 + 1)))
3937, 38breq12d 5156 . . . . . . . . . . . 12 (𝑘 = 0 → ((𝑏𝑘) < (𝑏‘(𝑘 + 1)) ↔ (𝑏‘0) < (𝑏‘(0 + 1))))
4039biimpd 229 . . . . . . . . . . 11 (𝑘 = 0 → ((𝑏𝑘) < (𝑏‘(𝑘 + 1)) → (𝑏‘0) < (𝑏‘(0 + 1))))
4140con3d 152 . . . . . . . . . 10 (𝑘 = 0 → (¬ (𝑏‘0) < (𝑏‘(0 + 1)) → ¬ (𝑏𝑘) < (𝑏‘(𝑘 + 1))))
4236, 41syl5com 31 . . . . . . . . 9 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → (𝑘 = 0 → ¬ (𝑏𝑘) < (𝑏‘(𝑘 + 1))))
4321, 42jcad 512 . . . . . . . 8 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → (𝑘 = 0 → (𝑘 ∈ (0..^((♯‘𝑏) − 1)) ∧ ¬ (𝑏𝑘) < (𝑏‘(𝑘 + 1)))))
4443eximdv 1917 . . . . . . 7 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → (∃𝑘 𝑘 = 0 → ∃𝑘(𝑘 ∈ (0..^((♯‘𝑏) − 1)) ∧ ¬ (𝑏𝑘) < (𝑏‘(𝑘 + 1)))))
453, 44mpi 20 . . . . . 6 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → ∃𝑘(𝑘 ∈ (0..^((♯‘𝑏) − 1)) ∧ ¬ (𝑏𝑘) < (𝑏‘(𝑘 + 1))))
46 nfre1 3285 . . . . . . 7 𝑘𝑘 ∈ (0..^((♯‘𝑏) − 1)) ¬ (𝑏𝑘) < (𝑏‘(𝑘 + 1))
47 rspe 3249 . . . . . . 7 ((𝑘 ∈ (0..^((♯‘𝑏) − 1)) ∧ ¬ (𝑏𝑘) < (𝑏‘(𝑘 + 1))) → ∃𝑘 ∈ (0..^((♯‘𝑏) − 1)) ¬ (𝑏𝑘) < (𝑏‘(𝑘 + 1)))
4846, 47exlimi 2217 . . . . . 6 (∃𝑘(𝑘 ∈ (0..^((♯‘𝑏) − 1)) ∧ ¬ (𝑏𝑘) < (𝑏‘(𝑘 + 1))) → ∃𝑘 ∈ (0..^((♯‘𝑏) − 1)) ¬ (𝑏𝑘) < (𝑏‘(𝑘 + 1)))
4945, 48syl 17 . . . . 5 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → ∃𝑘 ∈ (0..^((♯‘𝑏) − 1)) ¬ (𝑏𝑘) < (𝑏‘(𝑘 + 1)))
50 rexnal 3100 . . . . 5 (∃𝑘 ∈ (0..^((♯‘𝑏) − 1)) ¬ (𝑏𝑘) < (𝑏‘(𝑘 + 1)) ↔ ¬ ∀𝑘 ∈ (0..^((♯‘𝑏) − 1))(𝑏𝑘) < (𝑏‘(𝑘 + 1)))
5149, 50sylib 218 . . . 4 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → ¬ ∀𝑘 ∈ (0..^((♯‘𝑏) − 1))(𝑏𝑘) < (𝑏‘(𝑘 + 1)))
52 df-upword 46894 . . . . . 6 UpWord 𝑆 = {𝑏 ∣ (𝑏 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑏) − 1))(𝑏𝑘) < (𝑏‘(𝑘 + 1)))}
5352eqabri 2885 . . . . 5 (𝑏 ∈ UpWord 𝑆 ↔ (𝑏 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑏) − 1))(𝑏𝑘) < (𝑏‘(𝑘 + 1))))
5453simprbi 496 . . . 4 (𝑏 ∈ UpWord 𝑆 → ∀𝑘 ∈ (0..^((♯‘𝑏) − 1))(𝑏𝑘) < (𝑏‘(𝑘 + 1)))
5551, 54nsyl 140 . . 3 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → ¬ 𝑏 ∈ UpWord 𝑆)
56 eleq1 2829 . . 3 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → (𝑏 ∈ UpWord 𝑆 ↔ (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) ∈ UpWord 𝑆))
5755, 56mtbid 324 . 2 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → ¬ (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) ∈ UpWord 𝑆)
581, 57vtocle 3555 1 ¬ (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) ∈ UpWord 𝑆
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2108  wral 3061  wrex 3070  Vcvv 3480   class class class wbr 5143  cfv 6561  (class class class)co 7431  0cc0 11155  1c1 11156   + caddc 11158   < clt 11295  cmin 11492  2c2 12321  cz 12613  ..^cfzo 13694  chash 14369  Word cword 14552   ++ cconcat 14608  ⟨“cs1 14633  UpWord cupword 46893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-concat 14609  df-s1 14634  df-upword 46894
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator