Users' Mathboxes Mathbox for Ender Ting < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tworepnotupword Structured version   Visualization version   GIF version

Theorem tworepnotupword 46877
Description: Concatenation of identical singletons is never an increasing sequence. (Contributed by Ender Ting, 22-Nov-2024.)
Hypothesis
Ref Expression
tworepnotupword.1 𝐴 ∈ V
Assertion
Ref Expression
tworepnotupword ¬ (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) ∈ UpWord 𝑆

Proof of Theorem tworepnotupword
Dummy variables 𝑘 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7402 . 2 (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) ∈ V
2 c0ex 11144 . . . . . . . 8 0 ∈ V
32isseti 3462 . . . . . . 7 𝑘 𝑘 = 0
4 0z 12516 . . . . . . . . . . . 12 0 ∈ ℤ
5 ccat2s1len 14564 . . . . . . . . . . . . . . 15 (♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) = 2
65oveq1i 7379 . . . . . . . . . . . . . 14 ((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1) = (2 − 1)
7 2m1e1 12283 . . . . . . . . . . . . . 14 (2 − 1) = 1
86, 7eqtri 2752 . . . . . . . . . . . . 13 ((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1) = 1
9 1z 12539 . . . . . . . . . . . . 13 1 ∈ ℤ
108, 9eqeltri 2824 . . . . . . . . . . . 12 ((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1) ∈ ℤ
11 0lt1 11676 . . . . . . . . . . . . 13 0 < 1
1211, 8breqtrri 5129 . . . . . . . . . . . 12 0 < ((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1)
13 fzolb 13602 . . . . . . . . . . . 12 (0 ∈ (0..^((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1)) ↔ (0 ∈ ℤ ∧ ((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1) ∈ ℤ ∧ 0 < ((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1)))
144, 10, 12, 13mpbir3an 1342 . . . . . . . . . . 11 0 ∈ (0..^((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1))
15 eleq1a 2823 . . . . . . . . . . 11 (0 ∈ (0..^((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1)) → (𝑘 = 0 → 𝑘 ∈ (0..^((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1))))
1614, 15ax-mp 5 . . . . . . . . . 10 (𝑘 = 0 → 𝑘 ∈ (0..^((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1)))
17 fveq2 6840 . . . . . . . . . . . . 13 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → (♯‘𝑏) = (♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)))
1817oveq1d 7384 . . . . . . . . . . . 12 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → ((♯‘𝑏) − 1) = ((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1))
1918oveq2d 7385 . . . . . . . . . . 11 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → (0..^((♯‘𝑏) − 1)) = (0..^((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1)))
2019eleq2d 2814 . . . . . . . . . 10 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → (𝑘 ∈ (0..^((♯‘𝑏) − 1)) ↔ 𝑘 ∈ (0..^((♯‘(⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)) − 1))))
2116, 20imbitrrid 246 . . . . . . . . 9 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → (𝑘 = 0 → 𝑘 ∈ (0..^((♯‘𝑏) − 1))))
22 et-ltneverrefl 46862 . . . . . . . . . . 11 ¬ 𝐴 < 𝐴
23 fveq1 6839 . . . . . . . . . . . . 13 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → (𝑏‘0) = ((⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)‘0))
24 tworepnotupword.1 . . . . . . . . . . . . . 14 𝐴 ∈ V
25 ccat2s1p1 14570 . . . . . . . . . . . . . 14 (𝐴 ∈ V → ((⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)‘0) = 𝐴)
2624, 25ax-mp 5 . . . . . . . . . . . . 13 ((⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)‘0) = 𝐴
2723, 26eqtrdi 2780 . . . . . . . . . . . 12 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → (𝑏‘0) = 𝐴)
28 fveq1 6839 . . . . . . . . . . . . 13 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → (𝑏‘(0 + 1)) = ((⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)‘(0 + 1)))
29 1e0p1 12667 . . . . . . . . . . . . . . 15 1 = (0 + 1)
3029fveq2i 6843 . . . . . . . . . . . . . 14 ((⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)‘1) = ((⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)‘(0 + 1))
31 ccat2s1p2 14571 . . . . . . . . . . . . . . 15 (𝐴 ∈ V → ((⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)‘1) = 𝐴)
3224, 31ax-mp 5 . . . . . . . . . . . . . 14 ((⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)‘1) = 𝐴
3330, 32eqtr3i 2754 . . . . . . . . . . . . 13 ((⟨“𝐴”⟩ ++ ⟨“𝐴”⟩)‘(0 + 1)) = 𝐴
3428, 33eqtrdi 2780 . . . . . . . . . . . 12 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → (𝑏‘(0 + 1)) = 𝐴)
3527, 34breq12d 5115 . . . . . . . . . . 11 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → ((𝑏‘0) < (𝑏‘(0 + 1)) ↔ 𝐴 < 𝐴))
3622, 35mtbiri 327 . . . . . . . . . 10 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → ¬ (𝑏‘0) < (𝑏‘(0 + 1)))
37 fveq2 6840 . . . . . . . . . . . . 13 (𝑘 = 0 → (𝑏𝑘) = (𝑏‘0))
38 fvoveq1 7392 . . . . . . . . . . . . 13 (𝑘 = 0 → (𝑏‘(𝑘 + 1)) = (𝑏‘(0 + 1)))
3937, 38breq12d 5115 . . . . . . . . . . . 12 (𝑘 = 0 → ((𝑏𝑘) < (𝑏‘(𝑘 + 1)) ↔ (𝑏‘0) < (𝑏‘(0 + 1))))
4039biimpd 229 . . . . . . . . . . 11 (𝑘 = 0 → ((𝑏𝑘) < (𝑏‘(𝑘 + 1)) → (𝑏‘0) < (𝑏‘(0 + 1))))
4140con3d 152 . . . . . . . . . 10 (𝑘 = 0 → (¬ (𝑏‘0) < (𝑏‘(0 + 1)) → ¬ (𝑏𝑘) < (𝑏‘(𝑘 + 1))))
4236, 41syl5com 31 . . . . . . . . 9 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → (𝑘 = 0 → ¬ (𝑏𝑘) < (𝑏‘(𝑘 + 1))))
4321, 42jcad 512 . . . . . . . 8 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → (𝑘 = 0 → (𝑘 ∈ (0..^((♯‘𝑏) − 1)) ∧ ¬ (𝑏𝑘) < (𝑏‘(𝑘 + 1)))))
4443eximdv 1917 . . . . . . 7 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → (∃𝑘 𝑘 = 0 → ∃𝑘(𝑘 ∈ (0..^((♯‘𝑏) − 1)) ∧ ¬ (𝑏𝑘) < (𝑏‘(𝑘 + 1)))))
453, 44mpi 20 . . . . . 6 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → ∃𝑘(𝑘 ∈ (0..^((♯‘𝑏) − 1)) ∧ ¬ (𝑏𝑘) < (𝑏‘(𝑘 + 1))))
46 nfre1 3260 . . . . . . 7 𝑘𝑘 ∈ (0..^((♯‘𝑏) − 1)) ¬ (𝑏𝑘) < (𝑏‘(𝑘 + 1))
47 rspe 3225 . . . . . . 7 ((𝑘 ∈ (0..^((♯‘𝑏) − 1)) ∧ ¬ (𝑏𝑘) < (𝑏‘(𝑘 + 1))) → ∃𝑘 ∈ (0..^((♯‘𝑏) − 1)) ¬ (𝑏𝑘) < (𝑏‘(𝑘 + 1)))
4846, 47exlimi 2218 . . . . . 6 (∃𝑘(𝑘 ∈ (0..^((♯‘𝑏) − 1)) ∧ ¬ (𝑏𝑘) < (𝑏‘(𝑘 + 1))) → ∃𝑘 ∈ (0..^((♯‘𝑏) − 1)) ¬ (𝑏𝑘) < (𝑏‘(𝑘 + 1)))
4945, 48syl 17 . . . . 5 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → ∃𝑘 ∈ (0..^((♯‘𝑏) − 1)) ¬ (𝑏𝑘) < (𝑏‘(𝑘 + 1)))
50 rexnal 3082 . . . . 5 (∃𝑘 ∈ (0..^((♯‘𝑏) − 1)) ¬ (𝑏𝑘) < (𝑏‘(𝑘 + 1)) ↔ ¬ ∀𝑘 ∈ (0..^((♯‘𝑏) − 1))(𝑏𝑘) < (𝑏‘(𝑘 + 1)))
5149, 50sylib 218 . . . 4 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → ¬ ∀𝑘 ∈ (0..^((♯‘𝑏) − 1))(𝑏𝑘) < (𝑏‘(𝑘 + 1)))
52 df-upword 46870 . . . . . 6 UpWord 𝑆 = {𝑏 ∣ (𝑏 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑏) − 1))(𝑏𝑘) < (𝑏‘(𝑘 + 1)))}
5352eqabri 2871 . . . . 5 (𝑏 ∈ UpWord 𝑆 ↔ (𝑏 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑏) − 1))(𝑏𝑘) < (𝑏‘(𝑘 + 1))))
5453simprbi 496 . . . 4 (𝑏 ∈ UpWord 𝑆 → ∀𝑘 ∈ (0..^((♯‘𝑏) − 1))(𝑏𝑘) < (𝑏‘(𝑘 + 1)))
5551, 54nsyl 140 . . 3 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → ¬ 𝑏 ∈ UpWord 𝑆)
56 eleq1 2816 . . 3 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → (𝑏 ∈ UpWord 𝑆 ↔ (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) ∈ UpWord 𝑆))
5755, 56mtbid 324 . 2 (𝑏 = (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) → ¬ (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) ∈ UpWord 𝑆)
581, 57vtocle 3518 1 ¬ (⟨“𝐴”⟩ ++ ⟨“𝐴”⟩) ∈ UpWord 𝑆
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  Vcvv 3444   class class class wbr 5102  cfv 6499  (class class class)co 7369  0cc0 11044  1c1 11045   + caddc 11047   < clt 11184  cmin 11381  2c2 12217  cz 12505  ..^cfzo 13591  chash 14271  Word cword 14454   ++ cconcat 14511  ⟨“cs1 14536  UpWord cupword 46869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-hash 14272  df-word 14455  df-concat 14512  df-s1 14537  df-upword 46870
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator