Step | Hyp | Ref
| Expression |
1 | | eleq1 2827 |
. . . . 5
⊢ (𝑛 = 𝑁 → (𝑛 ∈ ω ↔ 𝑁 ∈ ω)) |
2 | | eleq2 2828 |
. . . . 5
⊢ (𝑛 = 𝑁 → (1o ∈ 𝑛 ↔ 1o ∈
𝑁)) |
3 | 1, 2 | anbi12d 631 |
. . . 4
⊢ (𝑛 = 𝑁 → ((𝑛 ∈ ω ∧ 1o ∈
𝑛) ↔ (𝑁 ∈ ω ∧
1o ∈ 𝑁))) |
4 | | anass 469 |
. . . . . . . . 9
⊢ (((𝑛 ∈ ω ∧
1o ∈ 𝑛)
∧ ¬ 𝑦 ∈ (V
× 𝑈)) ↔ (𝑛 ∈ ω ∧
(1o ∈ 𝑛
∧ ¬ 𝑦 ∈ (V
× 𝑈)))) |
5 | | nfv 1918 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥(𝑛 ∈ ω ∧
(1o ∈ 𝑛
∧ ¬ 𝑦 ∈ (V
× 𝑈))) |
6 | | finxpreclem5.1 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))) |
7 | | nfmpo2 7365 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑥(𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))) |
8 | 6, 7 | nfcxfr 2906 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑥𝐹 |
9 | | nfcv 2908 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑥〈𝑛, 𝑦〉 |
10 | 8, 9 | nfrdg 8254 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑥rec(𝐹, 〈𝑛, 𝑦〉) |
11 | | nfcv 2908 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑥𝑛 |
12 | 10, 11 | nffv 6793 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥(rec(𝐹, 〈𝑛, 𝑦〉)‘𝑛) |
13 | 12 | nfeq2 2925 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥∅ =
(rec(𝐹, 〈𝑛, 𝑦〉)‘𝑛) |
14 | 13 | nfn 1861 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥 ¬
∅ = (rec(𝐹,
〈𝑛, 𝑦〉)‘𝑛) |
15 | 5, 14 | nfim 1900 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥((𝑛 ∈ ω ∧
(1o ∈ 𝑛
∧ ¬ 𝑦 ∈ (V
× 𝑈))) → ¬
∅ = (rec(𝐹,
〈𝑛, 𝑦〉)‘𝑛)) |
16 | | eleq1 2827 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑦 → (𝑥 ∈ (V × 𝑈) ↔ 𝑦 ∈ (V × 𝑈))) |
17 | 16 | notbid 318 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → (¬ 𝑥 ∈ (V × 𝑈) ↔ ¬ 𝑦 ∈ (V × 𝑈))) |
18 | 17 | anbi2d 629 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑦 → ((1o ∈ 𝑛 ∧ ¬ 𝑥 ∈ (V × 𝑈)) ↔ (1o ∈ 𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈)))) |
19 | 18 | anbi2d 629 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → ((𝑛 ∈ ω ∧ (1o ∈
𝑛 ∧ ¬ 𝑥 ∈ (V × 𝑈))) ↔ (𝑛 ∈ ω ∧ (1o ∈
𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈))))) |
20 | | opeq2 4806 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑦 → 〈𝑛, 𝑥〉 = 〈𝑛, 𝑦〉) |
21 | | rdgeq2 8252 |
. . . . . . . . . . . . . . . . . . 19
⊢
(〈𝑛, 𝑥〉 = 〈𝑛, 𝑦〉 → rec(𝐹, 〈𝑛, 𝑥〉) = rec(𝐹, 〈𝑛, 𝑦〉)) |
22 | 20, 21 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑦 → rec(𝐹, 〈𝑛, 𝑥〉) = rec(𝐹, 〈𝑛, 𝑦〉)) |
23 | 22 | fveq1d 6785 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → (rec(𝐹, 〈𝑛, 𝑥〉)‘𝑛) = (rec(𝐹, 〈𝑛, 𝑦〉)‘𝑛)) |
24 | 23 | eqeq2d 2750 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑦 → (∅ = (rec(𝐹, 〈𝑛, 𝑥〉)‘𝑛) ↔ ∅ = (rec(𝐹, 〈𝑛, 𝑦〉)‘𝑛))) |
25 | 24 | notbid 318 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → (¬ ∅ = (rec(𝐹, 〈𝑛, 𝑥〉)‘𝑛) ↔ ¬ ∅ = (rec(𝐹, 〈𝑛, 𝑦〉)‘𝑛))) |
26 | 19, 25 | imbi12d 345 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → (((𝑛 ∈ ω ∧ (1o ∈
𝑛 ∧ ¬ 𝑥 ∈ (V × 𝑈))) → ¬ ∅ =
(rec(𝐹, 〈𝑛, 𝑥〉)‘𝑛)) ↔ ((𝑛 ∈ ω ∧ (1o ∈
𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈))) → ¬ ∅ =
(rec(𝐹, 〈𝑛, 𝑦〉)‘𝑛)))) |
27 | | anass 469 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑛 ∈ ω ∧
1o ∈ 𝑛)
∧ ¬ 𝑥 ∈ (V
× 𝑈)) ↔ (𝑛 ∈ ω ∧
(1o ∈ 𝑛
∧ ¬ 𝑥 ∈ (V
× 𝑈)))) |
28 | | vex 3437 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑛 ∈ V |
29 | | fveqeq2 6792 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑚 = ∅ → ((rec(𝐹, 〈𝑛, 𝑥〉)‘𝑚) = 〈𝑛, 𝑥〉 ↔ (rec(𝐹, 〈𝑛, 𝑥〉)‘∅) = 〈𝑛, 𝑥〉)) |
30 | | fveqeq2 6792 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑚 = 𝑜 → ((rec(𝐹, 〈𝑛, 𝑥〉)‘𝑚) = 〈𝑛, 𝑥〉 ↔ (rec(𝐹, 〈𝑛, 𝑥〉)‘𝑜) = 〈𝑛, 𝑥〉)) |
31 | | fveqeq2 6792 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑚 = suc 𝑜 → ((rec(𝐹, 〈𝑛, 𝑥〉)‘𝑚) = 〈𝑛, 𝑥〉 ↔ (rec(𝐹, 〈𝑛, 𝑥〉)‘suc 𝑜) = 〈𝑛, 𝑥〉)) |
32 | | opex 5380 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
〈𝑛, 𝑥〉 ∈ V |
33 | 32 | rdg0 8261 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(rec(𝐹, 〈𝑛, 𝑥〉)‘∅) = 〈𝑛, 𝑥〉 |
34 | 33 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑛 ∈ ω ∧
1o ∈ 𝑛)
∧ ¬ 𝑥 ∈ (V
× 𝑈)) →
(rec(𝐹, 〈𝑛, 𝑥〉)‘∅) = 〈𝑛, 𝑥〉) |
35 | | nnon 7727 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑜 ∈ ω → 𝑜 ∈ On) |
36 | | rdgsuc 8264 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑜 ∈ On → (rec(𝐹, 〈𝑛, 𝑥〉)‘suc 𝑜) = (𝐹‘(rec(𝐹, 〈𝑛, 𝑥〉)‘𝑜))) |
37 | 35, 36 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑜 ∈ ω →
(rec(𝐹, 〈𝑛, 𝑥〉)‘suc 𝑜) = (𝐹‘(rec(𝐹, 〈𝑛, 𝑥〉)‘𝑜))) |
38 | | fveq2 6783 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((rec(𝐹, 〈𝑛, 𝑥〉)‘𝑜) = 〈𝑛, 𝑥〉 → (𝐹‘(rec(𝐹, 〈𝑛, 𝑥〉)‘𝑜)) = (𝐹‘〈𝑛, 𝑥〉)) |
39 | 37, 38 | sylan9eq 2799 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑜 ∈ ω ∧ (rec(𝐹, 〈𝑛, 𝑥〉)‘𝑜) = 〈𝑛, 𝑥〉) → (rec(𝐹, 〈𝑛, 𝑥〉)‘suc 𝑜) = (𝐹‘〈𝑛, 𝑥〉)) |
40 | 6 | finxpreclem5 35575 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑛 ∈ ω ∧
1o ∈ 𝑛)
→ (¬ 𝑥 ∈ (V
× 𝑈) → (𝐹‘〈𝑛, 𝑥〉) = 〈𝑛, 𝑥〉)) |
41 | 40 | imp 407 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑛 ∈ ω ∧
1o ∈ 𝑛)
∧ ¬ 𝑥 ∈ (V
× 𝑈)) → (𝐹‘〈𝑛, 𝑥〉) = 〈𝑛, 𝑥〉) |
42 | 39, 41 | sylan9eq 2799 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑜 ∈ ω ∧ (rec(𝐹, 〈𝑛, 𝑥〉)‘𝑜) = 〈𝑛, 𝑥〉) ∧ ((𝑛 ∈ ω ∧ 1o ∈
𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈))) → (rec(𝐹, 〈𝑛, 𝑥〉)‘suc 𝑜) = 〈𝑛, 𝑥〉) |
43 | 42 | expl 458 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑜 ∈ ω →
(((rec(𝐹, 〈𝑛, 𝑥〉)‘𝑜) = 〈𝑛, 𝑥〉 ∧ ((𝑛 ∈ ω ∧ 1o ∈
𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈))) → (rec(𝐹, 〈𝑛, 𝑥〉)‘suc 𝑜) = 〈𝑛, 𝑥〉)) |
44 | 43 | expcomd 417 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑜 ∈ ω → (((𝑛 ∈ ω ∧
1o ∈ 𝑛)
∧ ¬ 𝑥 ∈ (V
× 𝑈)) →
((rec(𝐹, 〈𝑛, 𝑥〉)‘𝑜) = 〈𝑛, 𝑥〉 → (rec(𝐹, 〈𝑛, 𝑥〉)‘suc 𝑜) = 〈𝑛, 𝑥〉))) |
45 | 29, 30, 31, 34, 44 | finds2 7756 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 ∈ ω → (((𝑛 ∈ ω ∧
1o ∈ 𝑛)
∧ ¬ 𝑥 ∈ (V
× 𝑈)) →
(rec(𝐹, 〈𝑛, 𝑥〉)‘𝑚) = 〈𝑛, 𝑥〉)) |
46 | | eleq1 2827 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = 𝑚 → (𝑛 ∈ ω ↔ 𝑚 ∈ ω)) |
47 | | fveqeq2 6792 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 = 𝑚 → ((rec(𝐹, 〈𝑛, 𝑥〉)‘𝑛) = 〈𝑛, 𝑥〉 ↔ (rec(𝐹, 〈𝑛, 𝑥〉)‘𝑚) = 〈𝑛, 𝑥〉)) |
48 | 47 | imbi2d 341 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = 𝑚 → ((((𝑛 ∈ ω ∧ 1o ∈
𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (rec(𝐹, 〈𝑛, 𝑥〉)‘𝑛) = 〈𝑛, 𝑥〉) ↔ (((𝑛 ∈ ω ∧ 1o ∈
𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (rec(𝐹, 〈𝑛, 𝑥〉)‘𝑚) = 〈𝑛, 𝑥〉))) |
49 | 46, 48 | imbi12d 345 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = 𝑚 → ((𝑛 ∈ ω → (((𝑛 ∈ ω ∧ 1o ∈
𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (rec(𝐹, 〈𝑛, 𝑥〉)‘𝑛) = 〈𝑛, 𝑥〉)) ↔ (𝑚 ∈ ω → (((𝑛 ∈ ω ∧ 1o ∈
𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (rec(𝐹, 〈𝑛, 𝑥〉)‘𝑚) = 〈𝑛, 𝑥〉)))) |
50 | 45, 49 | mpbiri 257 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = 𝑚 → (𝑛 ∈ ω → (((𝑛 ∈ ω ∧ 1o ∈
𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (rec(𝐹, 〈𝑛, 𝑥〉)‘𝑛) = 〈𝑛, 𝑥〉))) |
51 | 50 | equcoms 2024 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 = 𝑛 → (𝑛 ∈ ω → (((𝑛 ∈ ω ∧ 1o ∈
𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (rec(𝐹, 〈𝑛, 𝑥〉)‘𝑛) = 〈𝑛, 𝑥〉))) |
52 | 28, 51 | vtocle 3525 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ ω → (((𝑛 ∈ ω ∧
1o ∈ 𝑛)
∧ ¬ 𝑥 ∈ (V
× 𝑈)) →
(rec(𝐹, 〈𝑛, 𝑥〉)‘𝑛) = 〈𝑛, 𝑥〉)) |
53 | 27, 52 | syl5bir 242 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ω → ((𝑛 ∈ ω ∧
(1o ∈ 𝑛
∧ ¬ 𝑥 ∈ (V
× 𝑈))) →
(rec(𝐹, 〈𝑛, 𝑥〉)‘𝑛) = 〈𝑛, 𝑥〉)) |
54 | 53 | anabsi5 666 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ ω ∧
(1o ∈ 𝑛
∧ ¬ 𝑥 ∈ (V
× 𝑈))) →
(rec(𝐹, 〈𝑛, 𝑥〉)‘𝑛) = 〈𝑛, 𝑥〉) |
55 | | vex 3437 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑥 ∈ V |
56 | 28, 55 | opnzi 5390 |
. . . . . . . . . . . . . . . . . 18
⊢
〈𝑛, 𝑥〉 ≠
∅ |
57 | 56 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ ω ∧
(1o ∈ 𝑛
∧ ¬ 𝑥 ∈ (V
× 𝑈))) →
〈𝑛, 𝑥〉 ≠ ∅) |
58 | 54, 57 | eqnetrd 3012 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈ ω ∧
(1o ∈ 𝑛
∧ ¬ 𝑥 ∈ (V
× 𝑈))) →
(rec(𝐹, 〈𝑛, 𝑥〉)‘𝑛) ≠ ∅) |
59 | 58 | necomd 3000 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ω ∧
(1o ∈ 𝑛
∧ ¬ 𝑥 ∈ (V
× 𝑈))) → ∅
≠ (rec(𝐹, 〈𝑛, 𝑥〉)‘𝑛)) |
60 | 59 | neneqd 2949 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ω ∧
(1o ∈ 𝑛
∧ ¬ 𝑥 ∈ (V
× 𝑈))) → ¬
∅ = (rec(𝐹,
〈𝑛, 𝑥〉)‘𝑛)) |
61 | 15, 26, 60 | chvarfv 2234 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ω ∧
(1o ∈ 𝑛
∧ ¬ 𝑦 ∈ (V
× 𝑈))) → ¬
∅ = (rec(𝐹,
〈𝑛, 𝑦〉)‘𝑛)) |
62 | 61 | intnand 489 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ω ∧
(1o ∈ 𝑛
∧ ¬ 𝑦 ∈ (V
× 𝑈))) → ¬
(𝑛 ∈ ω ∧
∅ = (rec(𝐹,
〈𝑛, 𝑦〉)‘𝑛))) |
63 | 62 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑛 = 𝑁 ∧ (𝑛 ∈ ω ∧ (1o ∈
𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈)))) → ¬ (𝑛 ∈ ω ∧ ∅ =
(rec(𝐹, 〈𝑛, 𝑦〉)‘𝑛))) |
64 | | opeq1 4805 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 𝑁 → 〈𝑛, 𝑦〉 = 〈𝑁, 𝑦〉) |
65 | | rdgeq2 8252 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(〈𝑛, 𝑦〉 = 〈𝑁, 𝑦〉 → rec(𝐹, 〈𝑛, 𝑦〉) = rec(𝐹, 〈𝑁, 𝑦〉)) |
66 | 64, 65 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑁 → rec(𝐹, 〈𝑛, 𝑦〉) = rec(𝐹, 〈𝑁, 𝑦〉)) |
67 | | id 22 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑁 → 𝑛 = 𝑁) |
68 | 66, 67 | fveq12d 6790 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑁 → (rec(𝐹, 〈𝑛, 𝑦〉)‘𝑛) = (rec(𝐹, 〈𝑁, 𝑦〉)‘𝑁)) |
69 | 68 | eqeq2d 2750 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑁 → (∅ = (rec(𝐹, 〈𝑛, 𝑦〉)‘𝑛) ↔ ∅ = (rec(𝐹, 〈𝑁, 𝑦〉)‘𝑁))) |
70 | 1, 69 | anbi12d 631 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑁 → ((𝑛 ∈ ω ∧ ∅ = (rec(𝐹, 〈𝑛, 𝑦〉)‘𝑛)) ↔ (𝑁 ∈ ω ∧ ∅ = (rec(𝐹, 〈𝑁, 𝑦〉)‘𝑁)))) |
71 | 70 | abbidv 2808 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑁 → {𝑦 ∣ (𝑛 ∈ ω ∧ ∅ = (rec(𝐹, 〈𝑛, 𝑦〉)‘𝑛))} = {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec(𝐹, 〈𝑁, 𝑦〉)‘𝑁))}) |
72 | 6 | dffinxpf 35565 |
. . . . . . . . . . . . . . 15
⊢ (𝑈↑↑𝑁) = {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec(𝐹, 〈𝑁, 𝑦〉)‘𝑁))} |
73 | 71, 72 | eqtr4di 2797 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑁 → {𝑦 ∣ (𝑛 ∈ ω ∧ ∅ = (rec(𝐹, 〈𝑛, 𝑦〉)‘𝑛))} = (𝑈↑↑𝑁)) |
74 | 73 | eleq2d 2825 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑁 → (𝑦 ∈ {𝑦 ∣ (𝑛 ∈ ω ∧ ∅ = (rec(𝐹, 〈𝑛, 𝑦〉)‘𝑛))} ↔ 𝑦 ∈ (𝑈↑↑𝑁))) |
75 | | abid 2720 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ {𝑦 ∣ (𝑛 ∈ ω ∧ ∅ = (rec(𝐹, 〈𝑛, 𝑦〉)‘𝑛))} ↔ (𝑛 ∈ ω ∧ ∅ = (rec(𝐹, 〈𝑛, 𝑦〉)‘𝑛))) |
76 | 74, 75 | bitr3di 286 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑁 → (𝑦 ∈ (𝑈↑↑𝑁) ↔ (𝑛 ∈ ω ∧ ∅ = (rec(𝐹, 〈𝑛, 𝑦〉)‘𝑛)))) |
77 | 76 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑛 = 𝑁 ∧ (𝑛 ∈ ω ∧ (1o ∈
𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈)))) → (𝑦 ∈ (𝑈↑↑𝑁) ↔ (𝑛 ∈ ω ∧ ∅ = (rec(𝐹, 〈𝑛, 𝑦〉)‘𝑛)))) |
78 | 63, 77 | mtbird 325 |
. . . . . . . . . 10
⊢ ((𝑛 = 𝑁 ∧ (𝑛 ∈ ω ∧ (1o ∈
𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈)))) → ¬ 𝑦 ∈ (𝑈↑↑𝑁)) |
79 | 78 | ex 413 |
. . . . . . . . 9
⊢ (𝑛 = 𝑁 → ((𝑛 ∈ ω ∧ (1o ∈
𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈))) → ¬ 𝑦 ∈ (𝑈↑↑𝑁))) |
80 | 4, 79 | syl5bi 241 |
. . . . . . . 8
⊢ (𝑛 = 𝑁 → (((𝑛 ∈ ω ∧ 1o ∈
𝑛) ∧ ¬ 𝑦 ∈ (V × 𝑈)) → ¬ 𝑦 ∈ (𝑈↑↑𝑁))) |
81 | 80 | expdimp 453 |
. . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ (𝑛 ∈ ω ∧ 1o ∈
𝑛)) → (¬ 𝑦 ∈ (V × 𝑈) → ¬ 𝑦 ∈ (𝑈↑↑𝑁))) |
82 | 81 | con4d 115 |
. . . . . 6
⊢ ((𝑛 = 𝑁 ∧ (𝑛 ∈ ω ∧ 1o ∈
𝑛)) → (𝑦 ∈ (𝑈↑↑𝑁) → 𝑦 ∈ (V × 𝑈))) |
83 | 82 | ssrdv 3928 |
. . . . 5
⊢ ((𝑛 = 𝑁 ∧ (𝑛 ∈ ω ∧ 1o ∈
𝑛)) → (𝑈↑↑𝑁) ⊆ (V × 𝑈)) |
84 | 83 | ex 413 |
. . . 4
⊢ (𝑛 = 𝑁 → ((𝑛 ∈ ω ∧ 1o ∈
𝑛) → (𝑈↑↑𝑁) ⊆ (V × 𝑈))) |
85 | 3, 84 | sylbird 259 |
. . 3
⊢ (𝑛 = 𝑁 → ((𝑁 ∈ ω ∧ 1o ∈
𝑁) → (𝑈↑↑𝑁) ⊆ (V × 𝑈))) |
86 | 85 | vtocleg 3522 |
. 2
⊢ (𝑁 ∈ ω → ((𝑁 ∈ ω ∧
1o ∈ 𝑁)
→ (𝑈↑↑𝑁) ⊆ (V × 𝑈))) |
87 | 86 | anabsi5 666 |
1
⊢ ((𝑁 ∈ ω ∧
1o ∈ 𝑁)
→ (𝑈↑↑𝑁) ⊆ (V × 𝑈)) |