Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxpreclem6 Structured version   Visualization version   GIF version

Theorem finxpreclem6 33549
Description: Lemma for ↑↑ recursion theorems. (Contributed by ML, 24-Oct-2020.)
Hypothesis
Ref Expression
finxpreclem5.1 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
Assertion
Ref Expression
finxpreclem6 ((𝑁 ∈ ω ∧ 1𝑜𝑁) → (𝑈↑↑𝑁) ⊆ (V × 𝑈))
Distinct variable groups:   𝑥,𝑛,𝑁   𝑈,𝑛,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem finxpreclem6
Dummy variables 𝑚 𝑜 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2873 . . . . 5 (𝑛 = 𝑁 → (𝑛 ∈ ω ↔ 𝑁 ∈ ω))
2 eleq2 2874 . . . . 5 (𝑛 = 𝑁 → (1𝑜𝑛 ↔ 1𝑜𝑁))
31, 2anbi12d 618 . . . 4 (𝑛 = 𝑁 → ((𝑛 ∈ ω ∧ 1𝑜𝑛) ↔ (𝑁 ∈ ω ∧ 1𝑜𝑁)))
4 anass 456 . . . . . . . . 9 (((𝑛 ∈ ω ∧ 1𝑜𝑛) ∧ ¬ 𝑦 ∈ (V × 𝑈)) ↔ (𝑛 ∈ ω ∧ (1𝑜𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈))))
5 nfv 2005 . . . . . . . . . . . . . . 15 𝑥(𝑛 ∈ ω ∧ (1𝑜𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈)))
6 finxpreclem5.1 . . . . . . . . . . . . . . . . . . . 20 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
7 nfmpt22 6953 . . . . . . . . . . . . . . . . . . . 20 𝑥(𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
86, 7nfcxfr 2946 . . . . . . . . . . . . . . . . . . 19 𝑥𝐹
9 nfcv 2948 . . . . . . . . . . . . . . . . . . 19 𝑥𝑛, 𝑦
108, 9nfrdg 7746 . . . . . . . . . . . . . . . . . 18 𝑥rec(𝐹, ⟨𝑛, 𝑦⟩)
11 nfcv 2948 . . . . . . . . . . . . . . . . . 18 𝑥𝑛
1210, 11nffv 6418 . . . . . . . . . . . . . . . . 17 𝑥(rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛)
1312nfeq2 2964 . . . . . . . . . . . . . . . 16 𝑥∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛)
1413nfn 1944 . . . . . . . . . . . . . . 15 𝑥 ¬ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛)
155, 14nfim 1987 . . . . . . . . . . . . . 14 𝑥((𝑛 ∈ ω ∧ (1𝑜𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈))) → ¬ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛))
16 eleq1 2873 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝑥 ∈ (V × 𝑈) ↔ 𝑦 ∈ (V × 𝑈)))
1716notbid 309 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (¬ 𝑥 ∈ (V × 𝑈) ↔ ¬ 𝑦 ∈ (V × 𝑈)))
1817anbi2d 616 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → ((1𝑜𝑛 ∧ ¬ 𝑥 ∈ (V × 𝑈)) ↔ (1𝑜𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈))))
1918anbi2d 616 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → ((𝑛 ∈ ω ∧ (1𝑜𝑛 ∧ ¬ 𝑥 ∈ (V × 𝑈))) ↔ (𝑛 ∈ ω ∧ (1𝑜𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈)))))
20 opeq2 4596 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → ⟨𝑛, 𝑥⟩ = ⟨𝑛, 𝑦⟩)
21 rdgeq2 7744 . . . . . . . . . . . . . . . . . . 19 (⟨𝑛, 𝑥⟩ = ⟨𝑛, 𝑦⟩ → rec(𝐹, ⟨𝑛, 𝑥⟩) = rec(𝐹, ⟨𝑛, 𝑦⟩))
2220, 21syl 17 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → rec(𝐹, ⟨𝑛, 𝑥⟩) = rec(𝐹, ⟨𝑛, 𝑦⟩))
2322fveq1d 6410 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛))
2423eqeq2d 2816 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (∅ = (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) ↔ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛)))
2524notbid 309 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (¬ ∅ = (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) ↔ ¬ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛)))
2619, 25imbi12d 335 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (((𝑛 ∈ ω ∧ (1𝑜𝑛 ∧ ¬ 𝑥 ∈ (V × 𝑈))) → ¬ ∅ = (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛)) ↔ ((𝑛 ∈ ω ∧ (1𝑜𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈))) → ¬ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛))))
27 anass 456 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ω ∧ 1𝑜𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) ↔ (𝑛 ∈ ω ∧ (1𝑜𝑛 ∧ ¬ 𝑥 ∈ (V × 𝑈))))
28 vex 3394 . . . . . . . . . . . . . . . . . . . 20 𝑛 ∈ V
29 fveqeq2 6417 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = ∅ → ((rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑚) = ⟨𝑛, 𝑥⟩ ↔ (rec(𝐹, ⟨𝑛, 𝑥⟩)‘∅) = ⟨𝑛, 𝑥⟩))
30 fveqeq2 6417 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = 𝑜 → ((rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑚) = ⟨𝑛, 𝑥⟩ ↔ (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑜) = ⟨𝑛, 𝑥⟩))
31 fveqeq2 6417 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = suc 𝑜 → ((rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑚) = ⟨𝑛, 𝑥⟩ ↔ (rec(𝐹, ⟨𝑛, 𝑥⟩)‘suc 𝑜) = ⟨𝑛, 𝑥⟩))
32 opex 5122 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑛, 𝑥⟩ ∈ V
3332rdg0 7753 . . . . . . . . . . . . . . . . . . . . . . . 24 (rec(𝐹, ⟨𝑛, 𝑥⟩)‘∅) = ⟨𝑛, 𝑥
3433a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ω ∧ 1𝑜𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘∅) = ⟨𝑛, 𝑥⟩)
35 nnon 7301 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑜 ∈ ω → 𝑜 ∈ On)
36 rdgsuc 7756 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑜 ∈ On → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘suc 𝑜) = (𝐹‘(rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑜)))
3735, 36syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑜 ∈ ω → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘suc 𝑜) = (𝐹‘(rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑜)))
38 fveq2 6408 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑜) = ⟨𝑛, 𝑥⟩ → (𝐹‘(rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑜)) = (𝐹‘⟨𝑛, 𝑥⟩))
3937, 38sylan9eq 2860 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑜 ∈ ω ∧ (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑜) = ⟨𝑛, 𝑥⟩) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘suc 𝑜) = (𝐹‘⟨𝑛, 𝑥⟩))
406finxpreclem5 33548 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛 ∈ ω ∧ 1𝑜𝑛) → (¬ 𝑥 ∈ (V × 𝑈) → (𝐹‘⟨𝑛, 𝑥⟩) = ⟨𝑛, 𝑥⟩))
4140imp 395 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑛 ∈ ω ∧ 1𝑜𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (𝐹‘⟨𝑛, 𝑥⟩) = ⟨𝑛, 𝑥⟩)
4239, 41sylan9eq 2860 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑜 ∈ ω ∧ (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑜) = ⟨𝑛, 𝑥⟩) ∧ ((𝑛 ∈ ω ∧ 1𝑜𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈))) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘suc 𝑜) = ⟨𝑛, 𝑥⟩)
4342expl 447 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑜 ∈ ω → (((rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑜) = ⟨𝑛, 𝑥⟩ ∧ ((𝑛 ∈ ω ∧ 1𝑜𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈))) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘suc 𝑜) = ⟨𝑛, 𝑥⟩))
4443expcomd 404 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑜 ∈ ω → (((𝑛 ∈ ω ∧ 1𝑜𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → ((rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑜) = ⟨𝑛, 𝑥⟩ → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘suc 𝑜) = ⟨𝑛, 𝑥⟩)))
4529, 30, 31, 34, 44finds2 7324 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ ω → (((𝑛 ∈ ω ∧ 1𝑜𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑚) = ⟨𝑛, 𝑥⟩))
46 eleq1 2873 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑚 → (𝑛 ∈ ω ↔ 𝑚 ∈ ω))
47 fveqeq2 6417 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑚 → ((rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) = ⟨𝑛, 𝑥⟩ ↔ (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑚) = ⟨𝑛, 𝑥⟩))
4847imbi2d 331 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑚 → ((((𝑛 ∈ ω ∧ 1𝑜𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) = ⟨𝑛, 𝑥⟩) ↔ (((𝑛 ∈ ω ∧ 1𝑜𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑚) = ⟨𝑛, 𝑥⟩)))
4946, 48imbi12d 335 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑚 → ((𝑛 ∈ ω → (((𝑛 ∈ ω ∧ 1𝑜𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) = ⟨𝑛, 𝑥⟩)) ↔ (𝑚 ∈ ω → (((𝑛 ∈ ω ∧ 1𝑜𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑚) = ⟨𝑛, 𝑥⟩))))
5045, 49mpbiri 249 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑚 → (𝑛 ∈ ω → (((𝑛 ∈ ω ∧ 1𝑜𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) = ⟨𝑛, 𝑥⟩)))
5150equcoms 2116 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑛 → (𝑛 ∈ ω → (((𝑛 ∈ ω ∧ 1𝑜𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) = ⟨𝑛, 𝑥⟩)))
5228, 51vtocle 3475 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ω → (((𝑛 ∈ ω ∧ 1𝑜𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) = ⟨𝑛, 𝑥⟩))
5327, 52syl5bir 234 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ω → ((𝑛 ∈ ω ∧ (1𝑜𝑛 ∧ ¬ 𝑥 ∈ (V × 𝑈))) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) = ⟨𝑛, 𝑥⟩))
5453anabsi5 651 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ω ∧ (1𝑜𝑛 ∧ ¬ 𝑥 ∈ (V × 𝑈))) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) = ⟨𝑛, 𝑥⟩)
55 vex 3394 . . . . . . . . . . . . . . . . . . 19 𝑥 ∈ V
5628, 55opnzi 5132 . . . . . . . . . . . . . . . . . 18 𝑛, 𝑥⟩ ≠ ∅
5756a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ω ∧ (1𝑜𝑛 ∧ ¬ 𝑥 ∈ (V × 𝑈))) → ⟨𝑛, 𝑥⟩ ≠ ∅)
5854, 57eqnetrd 3045 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ω ∧ (1𝑜𝑛 ∧ ¬ 𝑥 ∈ (V × 𝑈))) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) ≠ ∅)
5958necomd 3033 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ω ∧ (1𝑜𝑛 ∧ ¬ 𝑥 ∈ (V × 𝑈))) → ∅ ≠ (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛))
6059neneqd 2983 . . . . . . . . . . . . . 14 ((𝑛 ∈ ω ∧ (1𝑜𝑛 ∧ ¬ 𝑥 ∈ (V × 𝑈))) → ¬ ∅ = (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛))
6115, 26, 60chvar 2436 . . . . . . . . . . . . 13 ((𝑛 ∈ ω ∧ (1𝑜𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈))) → ¬ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛))
6261intnand 478 . . . . . . . . . . . 12 ((𝑛 ∈ ω ∧ (1𝑜𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈))) → ¬ (𝑛 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛)))
6362adantl 469 . . . . . . . . . . 11 ((𝑛 = 𝑁 ∧ (𝑛 ∈ ω ∧ (1𝑜𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈)))) → ¬ (𝑛 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛)))
64 abid 2794 . . . . . . . . . . . . 13 (𝑦 ∈ {𝑦 ∣ (𝑛 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛))} ↔ (𝑛 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛)))
65 opeq1 4595 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑁 → ⟨𝑛, 𝑦⟩ = ⟨𝑁, 𝑦⟩)
66 rdgeq2 7744 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑛, 𝑦⟩ = ⟨𝑁, 𝑦⟩ → rec(𝐹, ⟨𝑛, 𝑦⟩) = rec(𝐹, ⟨𝑁, 𝑦⟩))
6765, 66syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑁 → rec(𝐹, ⟨𝑛, 𝑦⟩) = rec(𝐹, ⟨𝑁, 𝑦⟩))
68 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑁𝑛 = 𝑁)
6967, 68fveq12d 6415 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑁 → (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛) = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁))
7069eqeq2d 2816 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑁 → (∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛) ↔ ∅ = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁)))
711, 70anbi12d 618 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑁 → ((𝑛 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛)) ↔ (𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁))))
7271abbidv 2925 . . . . . . . . . . . . . . 15 (𝑛 = 𝑁 → {𝑦 ∣ (𝑛 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛))} = {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁))})
736dffinxpf 33538 . . . . . . . . . . . . . . 15 (𝑈↑↑𝑁) = {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁))}
7472, 73syl6eqr 2858 . . . . . . . . . . . . . 14 (𝑛 = 𝑁 → {𝑦 ∣ (𝑛 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛))} = (𝑈↑↑𝑁))
7574eleq2d 2871 . . . . . . . . . . . . 13 (𝑛 = 𝑁 → (𝑦 ∈ {𝑦 ∣ (𝑛 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛))} ↔ 𝑦 ∈ (𝑈↑↑𝑁)))
7664, 75syl5rbbr 277 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (𝑦 ∈ (𝑈↑↑𝑁) ↔ (𝑛 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛))))
7776adantr 468 . . . . . . . . . . 11 ((𝑛 = 𝑁 ∧ (𝑛 ∈ ω ∧ (1𝑜𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈)))) → (𝑦 ∈ (𝑈↑↑𝑁) ↔ (𝑛 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛))))
7863, 77mtbird 316 . . . . . . . . . 10 ((𝑛 = 𝑁 ∧ (𝑛 ∈ ω ∧ (1𝑜𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈)))) → ¬ 𝑦 ∈ (𝑈↑↑𝑁))
7978ex 399 . . . . . . . . 9 (𝑛 = 𝑁 → ((𝑛 ∈ ω ∧ (1𝑜𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈))) → ¬ 𝑦 ∈ (𝑈↑↑𝑁)))
804, 79syl5bi 233 . . . . . . . 8 (𝑛 = 𝑁 → (((𝑛 ∈ ω ∧ 1𝑜𝑛) ∧ ¬ 𝑦 ∈ (V × 𝑈)) → ¬ 𝑦 ∈ (𝑈↑↑𝑁)))
8180expdimp 442 . . . . . . 7 ((𝑛 = 𝑁 ∧ (𝑛 ∈ ω ∧ 1𝑜𝑛)) → (¬ 𝑦 ∈ (V × 𝑈) → ¬ 𝑦 ∈ (𝑈↑↑𝑁)))
8281con4d 115 . . . . . 6 ((𝑛 = 𝑁 ∧ (𝑛 ∈ ω ∧ 1𝑜𝑛)) → (𝑦 ∈ (𝑈↑↑𝑁) → 𝑦 ∈ (V × 𝑈)))
8382ssrdv 3804 . . . . 5 ((𝑛 = 𝑁 ∧ (𝑛 ∈ ω ∧ 1𝑜𝑛)) → (𝑈↑↑𝑁) ⊆ (V × 𝑈))
8483ex 399 . . . 4 (𝑛 = 𝑁 → ((𝑛 ∈ ω ∧ 1𝑜𝑛) → (𝑈↑↑𝑁) ⊆ (V × 𝑈)))
853, 84sylbird 251 . . 3 (𝑛 = 𝑁 → ((𝑁 ∈ ω ∧ 1𝑜𝑁) → (𝑈↑↑𝑁) ⊆ (V × 𝑈)))
8685vtocleg 3472 . 2 (𝑁 ∈ ω → ((𝑁 ∈ ω ∧ 1𝑜𝑁) → (𝑈↑↑𝑁) ⊆ (V × 𝑈)))
8786anabsi5 651 1 ((𝑁 ∈ ω ∧ 1𝑜𝑁) → (𝑈↑↑𝑁) ⊆ (V × 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384   = wceq 1637  wcel 2156  {cab 2792  wne 2978  Vcvv 3391  wss 3769  c0 4116  ifcif 4279  cop 4376   cuni 4630   × cxp 5309  Oncon0 5936  suc csuc 5938  cfv 6101  cmpt2 6876  ωcom 7295  1st c1st 7396  reccrdg 7741  1𝑜c1o 7789  ↑↑cfinxp 33536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7179
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-ral 3101  df-rex 3102  df-reu 3103  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-ov 6877  df-oprab 6878  df-mpt2 6879  df-om 7296  df-wrecs 7642  df-recs 7704  df-rdg 7742  df-1o 7796  df-finxp 33537
This theorem is referenced by:  finxpsuclem  33550
  Copyright terms: Public domain W3C validator