Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxpreclem6 Structured version   Visualization version   GIF version

Theorem finxpreclem6 37362
Description: Lemma for ↑↑ recursion theorems. (Contributed by ML, 24-Oct-2020.)
Hypothesis
Ref Expression
finxpreclem5.1 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
Assertion
Ref Expression
finxpreclem6 ((𝑁 ∈ ω ∧ 1o𝑁) → (𝑈↑↑𝑁) ⊆ (V × 𝑈))
Distinct variable groups:   𝑥,𝑛,𝑁   𝑈,𝑛,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem finxpreclem6
Dummy variables 𝑚 𝑜 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2832 . . . . 5 (𝑛 = 𝑁 → (𝑛 ∈ ω ↔ 𝑁 ∈ ω))
2 eleq2 2833 . . . . 5 (𝑛 = 𝑁 → (1o𝑛 ↔ 1o𝑁))
31, 2anbi12d 631 . . . 4 (𝑛 = 𝑁 → ((𝑛 ∈ ω ∧ 1o𝑛) ↔ (𝑁 ∈ ω ∧ 1o𝑁)))
4 anass 468 . . . . . . . . 9 (((𝑛 ∈ ω ∧ 1o𝑛) ∧ ¬ 𝑦 ∈ (V × 𝑈)) ↔ (𝑛 ∈ ω ∧ (1o𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈))))
5 nfv 1913 . . . . . . . . . . . . . . 15 𝑥(𝑛 ∈ ω ∧ (1o𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈)))
6 finxpreclem5.1 . . . . . . . . . . . . . . . . . . . 20 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
7 nfmpo2 7531 . . . . . . . . . . . . . . . . . . . 20 𝑥(𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
86, 7nfcxfr 2906 . . . . . . . . . . . . . . . . . . 19 𝑥𝐹
9 nfcv 2908 . . . . . . . . . . . . . . . . . . 19 𝑥𝑛, 𝑦
108, 9nfrdg 8470 . . . . . . . . . . . . . . . . . 18 𝑥rec(𝐹, ⟨𝑛, 𝑦⟩)
11 nfcv 2908 . . . . . . . . . . . . . . . . . 18 𝑥𝑛
1210, 11nffv 6930 . . . . . . . . . . . . . . . . 17 𝑥(rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛)
1312nfeq2 2926 . . . . . . . . . . . . . . . 16 𝑥∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛)
1413nfn 1856 . . . . . . . . . . . . . . 15 𝑥 ¬ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛)
155, 14nfim 1895 . . . . . . . . . . . . . 14 𝑥((𝑛 ∈ ω ∧ (1o𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈))) → ¬ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛))
16 eleq1 2832 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝑥 ∈ (V × 𝑈) ↔ 𝑦 ∈ (V × 𝑈)))
1716notbid 318 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (¬ 𝑥 ∈ (V × 𝑈) ↔ ¬ 𝑦 ∈ (V × 𝑈)))
1817anbi2d 629 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → ((1o𝑛 ∧ ¬ 𝑥 ∈ (V × 𝑈)) ↔ (1o𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈))))
1918anbi2d 629 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → ((𝑛 ∈ ω ∧ (1o𝑛 ∧ ¬ 𝑥 ∈ (V × 𝑈))) ↔ (𝑛 ∈ ω ∧ (1o𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈)))))
20 opeq2 4898 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → ⟨𝑛, 𝑥⟩ = ⟨𝑛, 𝑦⟩)
21 rdgeq2 8468 . . . . . . . . . . . . . . . . . . 19 (⟨𝑛, 𝑥⟩ = ⟨𝑛, 𝑦⟩ → rec(𝐹, ⟨𝑛, 𝑥⟩) = rec(𝐹, ⟨𝑛, 𝑦⟩))
2220, 21syl 17 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → rec(𝐹, ⟨𝑛, 𝑥⟩) = rec(𝐹, ⟨𝑛, 𝑦⟩))
2322fveq1d 6922 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛))
2423eqeq2d 2751 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (∅ = (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) ↔ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛)))
2524notbid 318 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (¬ ∅ = (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) ↔ ¬ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛)))
2619, 25imbi12d 344 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (((𝑛 ∈ ω ∧ (1o𝑛 ∧ ¬ 𝑥 ∈ (V × 𝑈))) → ¬ ∅ = (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛)) ↔ ((𝑛 ∈ ω ∧ (1o𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈))) → ¬ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛))))
27 anass 468 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ω ∧ 1o𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) ↔ (𝑛 ∈ ω ∧ (1o𝑛 ∧ ¬ 𝑥 ∈ (V × 𝑈))))
28 vex 3492 . . . . . . . . . . . . . . . . . . . 20 𝑛 ∈ V
29 fveqeq2 6929 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = ∅ → ((rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑚) = ⟨𝑛, 𝑥⟩ ↔ (rec(𝐹, ⟨𝑛, 𝑥⟩)‘∅) = ⟨𝑛, 𝑥⟩))
30 fveqeq2 6929 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = 𝑜 → ((rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑚) = ⟨𝑛, 𝑥⟩ ↔ (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑜) = ⟨𝑛, 𝑥⟩))
31 fveqeq2 6929 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = suc 𝑜 → ((rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑚) = ⟨𝑛, 𝑥⟩ ↔ (rec(𝐹, ⟨𝑛, 𝑥⟩)‘suc 𝑜) = ⟨𝑛, 𝑥⟩))
32 opex 5484 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑛, 𝑥⟩ ∈ V
3332rdg0 8477 . . . . . . . . . . . . . . . . . . . . . . . 24 (rec(𝐹, ⟨𝑛, 𝑥⟩)‘∅) = ⟨𝑛, 𝑥
3433a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ω ∧ 1o𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘∅) = ⟨𝑛, 𝑥⟩)
35 nnon 7909 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑜 ∈ ω → 𝑜 ∈ On)
36 rdgsuc 8480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑜 ∈ On → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘suc 𝑜) = (𝐹‘(rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑜)))
3735, 36syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑜 ∈ ω → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘suc 𝑜) = (𝐹‘(rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑜)))
38 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑜) = ⟨𝑛, 𝑥⟩ → (𝐹‘(rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑜)) = (𝐹‘⟨𝑛, 𝑥⟩))
3937, 38sylan9eq 2800 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑜 ∈ ω ∧ (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑜) = ⟨𝑛, 𝑥⟩) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘suc 𝑜) = (𝐹‘⟨𝑛, 𝑥⟩))
406finxpreclem5 37361 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛 ∈ ω ∧ 1o𝑛) → (¬ 𝑥 ∈ (V × 𝑈) → (𝐹‘⟨𝑛, 𝑥⟩) = ⟨𝑛, 𝑥⟩))
4140imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑛 ∈ ω ∧ 1o𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (𝐹‘⟨𝑛, 𝑥⟩) = ⟨𝑛, 𝑥⟩)
4239, 41sylan9eq 2800 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑜 ∈ ω ∧ (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑜) = ⟨𝑛, 𝑥⟩) ∧ ((𝑛 ∈ ω ∧ 1o𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈))) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘suc 𝑜) = ⟨𝑛, 𝑥⟩)
4342expl 457 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑜 ∈ ω → (((rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑜) = ⟨𝑛, 𝑥⟩ ∧ ((𝑛 ∈ ω ∧ 1o𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈))) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘suc 𝑜) = ⟨𝑛, 𝑥⟩))
4443expcomd 416 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑜 ∈ ω → (((𝑛 ∈ ω ∧ 1o𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → ((rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑜) = ⟨𝑛, 𝑥⟩ → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘suc 𝑜) = ⟨𝑛, 𝑥⟩)))
4529, 30, 31, 34, 44finds2 7938 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ ω → (((𝑛 ∈ ω ∧ 1o𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑚) = ⟨𝑛, 𝑥⟩))
46 eleq1 2832 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑚 → (𝑛 ∈ ω ↔ 𝑚 ∈ ω))
47 fveqeq2 6929 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑚 → ((rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) = ⟨𝑛, 𝑥⟩ ↔ (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑚) = ⟨𝑛, 𝑥⟩))
4847imbi2d 340 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑚 → ((((𝑛 ∈ ω ∧ 1o𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) = ⟨𝑛, 𝑥⟩) ↔ (((𝑛 ∈ ω ∧ 1o𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑚) = ⟨𝑛, 𝑥⟩)))
4946, 48imbi12d 344 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑚 → ((𝑛 ∈ ω → (((𝑛 ∈ ω ∧ 1o𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) = ⟨𝑛, 𝑥⟩)) ↔ (𝑚 ∈ ω → (((𝑛 ∈ ω ∧ 1o𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑚) = ⟨𝑛, 𝑥⟩))))
5045, 49mpbiri 258 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑚 → (𝑛 ∈ ω → (((𝑛 ∈ ω ∧ 1o𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) = ⟨𝑛, 𝑥⟩)))
5150equcoms 2019 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑛 → (𝑛 ∈ ω → (((𝑛 ∈ ω ∧ 1o𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) = ⟨𝑛, 𝑥⟩)))
5228, 51vtocle 3567 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ω → (((𝑛 ∈ ω ∧ 1o𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) = ⟨𝑛, 𝑥⟩))
5327, 52biimtrrid 243 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ω → ((𝑛 ∈ ω ∧ (1o𝑛 ∧ ¬ 𝑥 ∈ (V × 𝑈))) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) = ⟨𝑛, 𝑥⟩))
5453anabsi5 668 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ω ∧ (1o𝑛 ∧ ¬ 𝑥 ∈ (V × 𝑈))) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) = ⟨𝑛, 𝑥⟩)
55 vex 3492 . . . . . . . . . . . . . . . . . . 19 𝑥 ∈ V
5628, 55opnzi 5494 . . . . . . . . . . . . . . . . . 18 𝑛, 𝑥⟩ ≠ ∅
5756a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ω ∧ (1o𝑛 ∧ ¬ 𝑥 ∈ (V × 𝑈))) → ⟨𝑛, 𝑥⟩ ≠ ∅)
5854, 57eqnetrd 3014 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ω ∧ (1o𝑛 ∧ ¬ 𝑥 ∈ (V × 𝑈))) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) ≠ ∅)
5958necomd 3002 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ω ∧ (1o𝑛 ∧ ¬ 𝑥 ∈ (V × 𝑈))) → ∅ ≠ (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛))
6059neneqd 2951 . . . . . . . . . . . . . 14 ((𝑛 ∈ ω ∧ (1o𝑛 ∧ ¬ 𝑥 ∈ (V × 𝑈))) → ¬ ∅ = (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛))
6115, 26, 60chvarfv 2241 . . . . . . . . . . . . 13 ((𝑛 ∈ ω ∧ (1o𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈))) → ¬ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛))
6261intnand 488 . . . . . . . . . . . 12 ((𝑛 ∈ ω ∧ (1o𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈))) → ¬ (𝑛 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛)))
6362adantl 481 . . . . . . . . . . 11 ((𝑛 = 𝑁 ∧ (𝑛 ∈ ω ∧ (1o𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈)))) → ¬ (𝑛 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛)))
64 opeq1 4897 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑁 → ⟨𝑛, 𝑦⟩ = ⟨𝑁, 𝑦⟩)
65 rdgeq2 8468 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑛, 𝑦⟩ = ⟨𝑁, 𝑦⟩ → rec(𝐹, ⟨𝑛, 𝑦⟩) = rec(𝐹, ⟨𝑁, 𝑦⟩))
6664, 65syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑁 → rec(𝐹, ⟨𝑛, 𝑦⟩) = rec(𝐹, ⟨𝑁, 𝑦⟩))
67 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑁𝑛 = 𝑁)
6866, 67fveq12d 6927 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑁 → (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛) = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁))
6968eqeq2d 2751 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑁 → (∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛) ↔ ∅ = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁)))
701, 69anbi12d 631 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑁 → ((𝑛 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛)) ↔ (𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁))))
7170abbidv 2811 . . . . . . . . . . . . . . 15 (𝑛 = 𝑁 → {𝑦 ∣ (𝑛 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛))} = {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁))})
726dffinxpf 37351 . . . . . . . . . . . . . . 15 (𝑈↑↑𝑁) = {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁))}
7371, 72eqtr4di 2798 . . . . . . . . . . . . . 14 (𝑛 = 𝑁 → {𝑦 ∣ (𝑛 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛))} = (𝑈↑↑𝑁))
7473eleq2d 2830 . . . . . . . . . . . . 13 (𝑛 = 𝑁 → (𝑦 ∈ {𝑦 ∣ (𝑛 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛))} ↔ 𝑦 ∈ (𝑈↑↑𝑁)))
75 abid 2721 . . . . . . . . . . . . 13 (𝑦 ∈ {𝑦 ∣ (𝑛 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛))} ↔ (𝑛 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛)))
7674, 75bitr3di 286 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (𝑦 ∈ (𝑈↑↑𝑁) ↔ (𝑛 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛))))
7776adantr 480 . . . . . . . . . . 11 ((𝑛 = 𝑁 ∧ (𝑛 ∈ ω ∧ (1o𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈)))) → (𝑦 ∈ (𝑈↑↑𝑁) ↔ (𝑛 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛))))
7863, 77mtbird 325 . . . . . . . . . 10 ((𝑛 = 𝑁 ∧ (𝑛 ∈ ω ∧ (1o𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈)))) → ¬ 𝑦 ∈ (𝑈↑↑𝑁))
7978ex 412 . . . . . . . . 9 (𝑛 = 𝑁 → ((𝑛 ∈ ω ∧ (1o𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈))) → ¬ 𝑦 ∈ (𝑈↑↑𝑁)))
804, 79biimtrid 242 . . . . . . . 8 (𝑛 = 𝑁 → (((𝑛 ∈ ω ∧ 1o𝑛) ∧ ¬ 𝑦 ∈ (V × 𝑈)) → ¬ 𝑦 ∈ (𝑈↑↑𝑁)))
8180expdimp 452 . . . . . . 7 ((𝑛 = 𝑁 ∧ (𝑛 ∈ ω ∧ 1o𝑛)) → (¬ 𝑦 ∈ (V × 𝑈) → ¬ 𝑦 ∈ (𝑈↑↑𝑁)))
8281con4d 115 . . . . . 6 ((𝑛 = 𝑁 ∧ (𝑛 ∈ ω ∧ 1o𝑛)) → (𝑦 ∈ (𝑈↑↑𝑁) → 𝑦 ∈ (V × 𝑈)))
8382ssrdv 4014 . . . . 5 ((𝑛 = 𝑁 ∧ (𝑛 ∈ ω ∧ 1o𝑛)) → (𝑈↑↑𝑁) ⊆ (V × 𝑈))
8483ex 412 . . . 4 (𝑛 = 𝑁 → ((𝑛 ∈ ω ∧ 1o𝑛) → (𝑈↑↑𝑁) ⊆ (V × 𝑈)))
853, 84sylbird 260 . . 3 (𝑛 = 𝑁 → ((𝑁 ∈ ω ∧ 1o𝑁) → (𝑈↑↑𝑁) ⊆ (V × 𝑈)))
8685vtocleg 3565 . 2 (𝑁 ∈ ω → ((𝑁 ∈ ω ∧ 1o𝑁) → (𝑈↑↑𝑁) ⊆ (V × 𝑈)))
8786anabsi5 668 1 ((𝑁 ∈ ω ∧ 1o𝑁) → (𝑈↑↑𝑁) ⊆ (V × 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  {cab 2717  wne 2946  Vcvv 3488  wss 3976  c0 4352  ifcif 4548  cop 4654   cuni 4931   × cxp 5698  Oncon0 6395  suc csuc 6397  cfv 6573  cmpo 7450  ωcom 7903  1st c1st 8028  reccrdg 8465  1oc1o 8515  ↑↑cfinxp 37349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-finxp 37350
This theorem is referenced by:  finxpsuclem  37363
  Copyright terms: Public domain W3C validator