MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz6.12i Structured version   Visualization version   GIF version

Theorem tz6.12i 6934
Description: Corollary of Theorem 6.12(2) of [TakeutiZaring] p. 27. (Contributed by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
tz6.12i (𝐵 ≠ ∅ → ((𝐹𝐴) = 𝐵𝐴𝐹𝐵))

Proof of Theorem tz6.12i
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fvex 6919 . . . . 5 (𝐹𝐴) ∈ V
2 neeq1 3003 . . . . . . . 8 ((𝐹𝐴) = 𝑦 → ((𝐹𝐴) ≠ ∅ ↔ 𝑦 ≠ ∅))
3 tz6.12-2 6894 . . . . . . . . . . 11 (¬ ∃!𝑦 𝐴𝐹𝑦 → (𝐹𝐴) = ∅)
43necon1ai 2968 . . . . . . . . . 10 ((𝐹𝐴) ≠ ∅ → ∃!𝑦 𝐴𝐹𝑦)
5 tz6.12c 6928 . . . . . . . . . 10 (∃!𝑦 𝐴𝐹𝑦 → ((𝐹𝐴) = 𝑦𝐴𝐹𝑦))
64, 5syl 17 . . . . . . . . 9 ((𝐹𝐴) ≠ ∅ → ((𝐹𝐴) = 𝑦𝐴𝐹𝑦))
76biimpcd 249 . . . . . . . 8 ((𝐹𝐴) = 𝑦 → ((𝐹𝐴) ≠ ∅ → 𝐴𝐹𝑦))
82, 7sylbird 260 . . . . . . 7 ((𝐹𝐴) = 𝑦 → (𝑦 ≠ ∅ → 𝐴𝐹𝑦))
98eqcoms 2745 . . . . . 6 (𝑦 = (𝐹𝐴) → (𝑦 ≠ ∅ → 𝐴𝐹𝑦))
10 neeq1 3003 . . . . . 6 (𝑦 = (𝐹𝐴) → (𝑦 ≠ ∅ ↔ (𝐹𝐴) ≠ ∅))
11 breq2 5147 . . . . . 6 (𝑦 = (𝐹𝐴) → (𝐴𝐹𝑦𝐴𝐹(𝐹𝐴)))
129, 10, 113imtr3d 293 . . . . 5 (𝑦 = (𝐹𝐴) → ((𝐹𝐴) ≠ ∅ → 𝐴𝐹(𝐹𝐴)))
131, 12vtocle 3555 . . . 4 ((𝐹𝐴) ≠ ∅ → 𝐴𝐹(𝐹𝐴))
1413a1i 11 . . 3 ((𝐹𝐴) = 𝐵 → ((𝐹𝐴) ≠ ∅ → 𝐴𝐹(𝐹𝐴)))
15 neeq1 3003 . . 3 ((𝐹𝐴) = 𝐵 → ((𝐹𝐴) ≠ ∅ ↔ 𝐵 ≠ ∅))
16 breq2 5147 . . 3 ((𝐹𝐴) = 𝐵 → (𝐴𝐹(𝐹𝐴) ↔ 𝐴𝐹𝐵))
1714, 15, 163imtr3d 293 . 2 ((𝐹𝐴) = 𝐵 → (𝐵 ≠ ∅ → 𝐴𝐹𝐵))
1817com12 32 1 (𝐵 ≠ ∅ → ((𝐹𝐴) = 𝐵𝐴𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  ∃!weu 2568  wne 2940  c0 4333   class class class wbr 5143  cfv 6561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-nul 5306
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-iota 6514  df-fv 6569
This theorem is referenced by:  fvbr0  6935  fvclss  7261  dcomex  10487
  Copyright terms: Public domain W3C validator