![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tz6.12i | Structured version Visualization version GIF version |
Description: Corollary of Theorem 6.12(2) of [TakeutiZaring] p. 27. (Contributed by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
tz6.12i | ⊢ (𝐵 ≠ ∅ → ((𝐹‘𝐴) = 𝐵 → 𝐴𝐹𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6897 | . . . . 5 ⊢ (𝐹‘𝐴) ∈ V | |
2 | neeq1 2997 | . . . . . . . 8 ⊢ ((𝐹‘𝐴) = 𝑦 → ((𝐹‘𝐴) ≠ ∅ ↔ 𝑦 ≠ ∅)) | |
3 | tz6.12-2 6872 | . . . . . . . . . . 11 ⊢ (¬ ∃!𝑦 𝐴𝐹𝑦 → (𝐹‘𝐴) = ∅) | |
4 | 3 | necon1ai 2962 | . . . . . . . . . 10 ⊢ ((𝐹‘𝐴) ≠ ∅ → ∃!𝑦 𝐴𝐹𝑦) |
5 | tz6.12c 6906 | . . . . . . . . . 10 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ((𝐹‘𝐴) = 𝑦 ↔ 𝐴𝐹𝑦)) | |
6 | 4, 5 | syl 17 | . . . . . . . . 9 ⊢ ((𝐹‘𝐴) ≠ ∅ → ((𝐹‘𝐴) = 𝑦 ↔ 𝐴𝐹𝑦)) |
7 | 6 | biimpcd 248 | . . . . . . . 8 ⊢ ((𝐹‘𝐴) = 𝑦 → ((𝐹‘𝐴) ≠ ∅ → 𝐴𝐹𝑦)) |
8 | 2, 7 | sylbird 260 | . . . . . . 7 ⊢ ((𝐹‘𝐴) = 𝑦 → (𝑦 ≠ ∅ → 𝐴𝐹𝑦)) |
9 | 8 | eqcoms 2734 | . . . . . 6 ⊢ (𝑦 = (𝐹‘𝐴) → (𝑦 ≠ ∅ → 𝐴𝐹𝑦)) |
10 | neeq1 2997 | . . . . . 6 ⊢ (𝑦 = (𝐹‘𝐴) → (𝑦 ≠ ∅ ↔ (𝐹‘𝐴) ≠ ∅)) | |
11 | breq2 5145 | . . . . . 6 ⊢ (𝑦 = (𝐹‘𝐴) → (𝐴𝐹𝑦 ↔ 𝐴𝐹(𝐹‘𝐴))) | |
12 | 9, 10, 11 | 3imtr3d 293 | . . . . 5 ⊢ (𝑦 = (𝐹‘𝐴) → ((𝐹‘𝐴) ≠ ∅ → 𝐴𝐹(𝐹‘𝐴))) |
13 | 1, 12 | vtocle 3538 | . . . 4 ⊢ ((𝐹‘𝐴) ≠ ∅ → 𝐴𝐹(𝐹‘𝐴)) |
14 | 13 | a1i 11 | . . 3 ⊢ ((𝐹‘𝐴) = 𝐵 → ((𝐹‘𝐴) ≠ ∅ → 𝐴𝐹(𝐹‘𝐴))) |
15 | neeq1 2997 | . . 3 ⊢ ((𝐹‘𝐴) = 𝐵 → ((𝐹‘𝐴) ≠ ∅ ↔ 𝐵 ≠ ∅)) | |
16 | breq2 5145 | . . 3 ⊢ ((𝐹‘𝐴) = 𝐵 → (𝐴𝐹(𝐹‘𝐴) ↔ 𝐴𝐹𝐵)) | |
17 | 14, 15, 16 | 3imtr3d 293 | . 2 ⊢ ((𝐹‘𝐴) = 𝐵 → (𝐵 ≠ ∅ → 𝐴𝐹𝐵)) |
18 | 17 | com12 32 | 1 ⊢ (𝐵 ≠ ∅ → ((𝐹‘𝐴) = 𝐵 → 𝐴𝐹𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∃!weu 2556 ≠ wne 2934 ∅c0 4317 class class class wbr 5141 ‘cfv 6536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-nul 5299 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-iota 6488 df-fv 6544 |
This theorem is referenced by: fvbr0 6913 fvclss 7235 dcomex 10441 |
Copyright terms: Public domain | W3C validator |