MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz6.12i Structured version   Visualization version   GIF version

Theorem tz6.12i 6782
Description: Corollary of Theorem 6.12(2) of [TakeutiZaring] p. 27. (Contributed by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
tz6.12i (𝐵 ≠ ∅ → ((𝐹𝐴) = 𝐵𝐴𝐹𝐵))

Proof of Theorem tz6.12i
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fvex 6769 . . . . 5 (𝐹𝐴) ∈ V
2 neeq1 3005 . . . . . . . 8 ((𝐹𝐴) = 𝑦 → ((𝐹𝐴) ≠ ∅ ↔ 𝑦 ≠ ∅))
3 tz6.12-2 6745 . . . . . . . . . . 11 (¬ ∃!𝑦 𝐴𝐹𝑦 → (𝐹𝐴) = ∅)
43necon1ai 2970 . . . . . . . . . 10 ((𝐹𝐴) ≠ ∅ → ∃!𝑦 𝐴𝐹𝑦)
5 tz6.12c 6781 . . . . . . . . . 10 (∃!𝑦 𝐴𝐹𝑦 → ((𝐹𝐴) = 𝑦𝐴𝐹𝑦))
64, 5syl 17 . . . . . . . . 9 ((𝐹𝐴) ≠ ∅ → ((𝐹𝐴) = 𝑦𝐴𝐹𝑦))
76biimpcd 248 . . . . . . . 8 ((𝐹𝐴) = 𝑦 → ((𝐹𝐴) ≠ ∅ → 𝐴𝐹𝑦))
82, 7sylbird 259 . . . . . . 7 ((𝐹𝐴) = 𝑦 → (𝑦 ≠ ∅ → 𝐴𝐹𝑦))
98eqcoms 2746 . . . . . 6 (𝑦 = (𝐹𝐴) → (𝑦 ≠ ∅ → 𝐴𝐹𝑦))
10 neeq1 3005 . . . . . 6 (𝑦 = (𝐹𝐴) → (𝑦 ≠ ∅ ↔ (𝐹𝐴) ≠ ∅))
11 breq2 5074 . . . . . 6 (𝑦 = (𝐹𝐴) → (𝐴𝐹𝑦𝐴𝐹(𝐹𝐴)))
129, 10, 113imtr3d 292 . . . . 5 (𝑦 = (𝐹𝐴) → ((𝐹𝐴) ≠ ∅ → 𝐴𝐹(𝐹𝐴)))
131, 12vtocle 3514 . . . 4 ((𝐹𝐴) ≠ ∅ → 𝐴𝐹(𝐹𝐴))
1413a1i 11 . . 3 ((𝐹𝐴) = 𝐵 → ((𝐹𝐴) ≠ ∅ → 𝐴𝐹(𝐹𝐴)))
15 neeq1 3005 . . 3 ((𝐹𝐴) = 𝐵 → ((𝐹𝐴) ≠ ∅ ↔ 𝐵 ≠ ∅))
16 breq2 5074 . . 3 ((𝐹𝐴) = 𝐵 → (𝐴𝐹(𝐹𝐴) ↔ 𝐴𝐹𝐵))
1714, 15, 163imtr3d 292 . 2 ((𝐹𝐴) = 𝐵 → (𝐵 ≠ ∅ → 𝐴𝐹𝐵))
1817com12 32 1 (𝐵 ≠ ∅ → ((𝐹𝐴) = 𝐵𝐴𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  ∃!weu 2568  wne 2942  c0 4253   class class class wbr 5070  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426
This theorem is referenced by:  fvbr0  6783  fvclss  7097  dcomex  10134
  Copyright terms: Public domain W3C validator