MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz6.12i Structured version   Visualization version   GIF version

Theorem tz6.12i 6671
Description: Corollary of Theorem 6.12(2) of [TakeutiZaring] p. 27. (Contributed by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
tz6.12i (𝐵 ≠ ∅ → ((𝐹𝐴) = 𝐵𝐴𝐹𝐵))

Proof of Theorem tz6.12i
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fvex 6658 . . . . 5 (𝐹𝐴) ∈ V
2 neeq1 3049 . . . . . . . 8 ((𝐹𝐴) = 𝑦 → ((𝐹𝐴) ≠ ∅ ↔ 𝑦 ≠ ∅))
3 tz6.12-2 6635 . . . . . . . . . . 11 (¬ ∃!𝑦 𝐴𝐹𝑦 → (𝐹𝐴) = ∅)
43necon1ai 3014 . . . . . . . . . 10 ((𝐹𝐴) ≠ ∅ → ∃!𝑦 𝐴𝐹𝑦)
5 tz6.12c 6670 . . . . . . . . . 10 (∃!𝑦 𝐴𝐹𝑦 → ((𝐹𝐴) = 𝑦𝐴𝐹𝑦))
64, 5syl 17 . . . . . . . . 9 ((𝐹𝐴) ≠ ∅ → ((𝐹𝐴) = 𝑦𝐴𝐹𝑦))
76biimpcd 252 . . . . . . . 8 ((𝐹𝐴) = 𝑦 → ((𝐹𝐴) ≠ ∅ → 𝐴𝐹𝑦))
82, 7sylbird 263 . . . . . . 7 ((𝐹𝐴) = 𝑦 → (𝑦 ≠ ∅ → 𝐴𝐹𝑦))
98eqcoms 2806 . . . . . 6 (𝑦 = (𝐹𝐴) → (𝑦 ≠ ∅ → 𝐴𝐹𝑦))
10 neeq1 3049 . . . . . 6 (𝑦 = (𝐹𝐴) → (𝑦 ≠ ∅ ↔ (𝐹𝐴) ≠ ∅))
11 breq2 5034 . . . . . 6 (𝑦 = (𝐹𝐴) → (𝐴𝐹𝑦𝐴𝐹(𝐹𝐴)))
129, 10, 113imtr3d 296 . . . . 5 (𝑦 = (𝐹𝐴) → ((𝐹𝐴) ≠ ∅ → 𝐴𝐹(𝐹𝐴)))
131, 12vtocle 3532 . . . 4 ((𝐹𝐴) ≠ ∅ → 𝐴𝐹(𝐹𝐴))
1413a1i 11 . . 3 ((𝐹𝐴) = 𝐵 → ((𝐹𝐴) ≠ ∅ → 𝐴𝐹(𝐹𝐴)))
15 neeq1 3049 . . 3 ((𝐹𝐴) = 𝐵 → ((𝐹𝐴) ≠ ∅ ↔ 𝐵 ≠ ∅))
16 breq2 5034 . . 3 ((𝐹𝐴) = 𝐵 → (𝐴𝐹(𝐹𝐴) ↔ 𝐴𝐹𝐵))
1714, 15, 163imtr3d 296 . 2 ((𝐹𝐴) = 𝐵 → (𝐵 ≠ ∅ → 𝐴𝐹𝐵))
1817com12 32 1 (𝐵 ≠ ∅ → ((𝐹𝐴) = 𝐵𝐴𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1538  ∃!weu 2628  wne 2987  c0 4243   class class class wbr 5030  cfv 6324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-nul 5174
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-ne 2988  df-ral 3111  df-rex 3112  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-iota 6283  df-fv 6332
This theorem is referenced by:  fvbr0  6672  fvclss  6979  dcomex  9858
  Copyright terms: Public domain W3C validator