![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tz6.12i | Structured version Visualization version GIF version |
Description: Corollary of Theorem 6.12(2) of [TakeutiZaring] p. 27. (Contributed by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
tz6.12i | ⊢ (𝐵 ≠ ∅ → ((𝐹‘𝐴) = 𝐵 → 𝐴𝐹𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6920 | . . . . 5 ⊢ (𝐹‘𝐴) ∈ V | |
2 | neeq1 3001 | . . . . . . . 8 ⊢ ((𝐹‘𝐴) = 𝑦 → ((𝐹‘𝐴) ≠ ∅ ↔ 𝑦 ≠ ∅)) | |
3 | tz6.12-2 6895 | . . . . . . . . . . 11 ⊢ (¬ ∃!𝑦 𝐴𝐹𝑦 → (𝐹‘𝐴) = ∅) | |
4 | 3 | necon1ai 2966 | . . . . . . . . . 10 ⊢ ((𝐹‘𝐴) ≠ ∅ → ∃!𝑦 𝐴𝐹𝑦) |
5 | tz6.12c 6929 | . . . . . . . . . 10 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ((𝐹‘𝐴) = 𝑦 ↔ 𝐴𝐹𝑦)) | |
6 | 4, 5 | syl 17 | . . . . . . . . 9 ⊢ ((𝐹‘𝐴) ≠ ∅ → ((𝐹‘𝐴) = 𝑦 ↔ 𝐴𝐹𝑦)) |
7 | 6 | biimpcd 249 | . . . . . . . 8 ⊢ ((𝐹‘𝐴) = 𝑦 → ((𝐹‘𝐴) ≠ ∅ → 𝐴𝐹𝑦)) |
8 | 2, 7 | sylbird 260 | . . . . . . 7 ⊢ ((𝐹‘𝐴) = 𝑦 → (𝑦 ≠ ∅ → 𝐴𝐹𝑦)) |
9 | 8 | eqcoms 2743 | . . . . . 6 ⊢ (𝑦 = (𝐹‘𝐴) → (𝑦 ≠ ∅ → 𝐴𝐹𝑦)) |
10 | neeq1 3001 | . . . . . 6 ⊢ (𝑦 = (𝐹‘𝐴) → (𝑦 ≠ ∅ ↔ (𝐹‘𝐴) ≠ ∅)) | |
11 | breq2 5152 | . . . . . 6 ⊢ (𝑦 = (𝐹‘𝐴) → (𝐴𝐹𝑦 ↔ 𝐴𝐹(𝐹‘𝐴))) | |
12 | 9, 10, 11 | 3imtr3d 293 | . . . . 5 ⊢ (𝑦 = (𝐹‘𝐴) → ((𝐹‘𝐴) ≠ ∅ → 𝐴𝐹(𝐹‘𝐴))) |
13 | 1, 12 | vtocle 3555 | . . . 4 ⊢ ((𝐹‘𝐴) ≠ ∅ → 𝐴𝐹(𝐹‘𝐴)) |
14 | 13 | a1i 11 | . . 3 ⊢ ((𝐹‘𝐴) = 𝐵 → ((𝐹‘𝐴) ≠ ∅ → 𝐴𝐹(𝐹‘𝐴))) |
15 | neeq1 3001 | . . 3 ⊢ ((𝐹‘𝐴) = 𝐵 → ((𝐹‘𝐴) ≠ ∅ ↔ 𝐵 ≠ ∅)) | |
16 | breq2 5152 | . . 3 ⊢ ((𝐹‘𝐴) = 𝐵 → (𝐴𝐹(𝐹‘𝐴) ↔ 𝐴𝐹𝐵)) | |
17 | 14, 15, 16 | 3imtr3d 293 | . 2 ⊢ ((𝐹‘𝐴) = 𝐵 → (𝐵 ≠ ∅ → 𝐴𝐹𝐵)) |
18 | 17 | com12 32 | 1 ⊢ (𝐵 ≠ ∅ → ((𝐹‘𝐴) = 𝐵 → 𝐴𝐹𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∃!weu 2566 ≠ wne 2938 ∅c0 4339 class class class wbr 5148 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-nul 5312 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 |
This theorem is referenced by: fvbr0 6936 fvclss 7261 dcomex 10485 |
Copyright terms: Public domain | W3C validator |