| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tz6.12i | Structured version Visualization version GIF version | ||
| Description: Corollary of Theorem 6.12(2) of [TakeutiZaring] p. 27. (Contributed by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| tz6.12i | ⊢ (𝐵 ≠ ∅ → ((𝐹‘𝐴) = 𝐵 → 𝐴𝐹𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6874 | . . . . 5 ⊢ (𝐹‘𝐴) ∈ V | |
| 2 | neeq1 2988 | . . . . . . . 8 ⊢ ((𝐹‘𝐴) = 𝑦 → ((𝐹‘𝐴) ≠ ∅ ↔ 𝑦 ≠ ∅)) | |
| 3 | tz6.12-2 6849 | . . . . . . . . . . 11 ⊢ (¬ ∃!𝑦 𝐴𝐹𝑦 → (𝐹‘𝐴) = ∅) | |
| 4 | 3 | necon1ai 2953 | . . . . . . . . . 10 ⊢ ((𝐹‘𝐴) ≠ ∅ → ∃!𝑦 𝐴𝐹𝑦) |
| 5 | tz6.12c 6883 | . . . . . . . . . 10 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ((𝐹‘𝐴) = 𝑦 ↔ 𝐴𝐹𝑦)) | |
| 6 | 4, 5 | syl 17 | . . . . . . . . 9 ⊢ ((𝐹‘𝐴) ≠ ∅ → ((𝐹‘𝐴) = 𝑦 ↔ 𝐴𝐹𝑦)) |
| 7 | 6 | biimpcd 249 | . . . . . . . 8 ⊢ ((𝐹‘𝐴) = 𝑦 → ((𝐹‘𝐴) ≠ ∅ → 𝐴𝐹𝑦)) |
| 8 | 2, 7 | sylbird 260 | . . . . . . 7 ⊢ ((𝐹‘𝐴) = 𝑦 → (𝑦 ≠ ∅ → 𝐴𝐹𝑦)) |
| 9 | 8 | eqcoms 2738 | . . . . . 6 ⊢ (𝑦 = (𝐹‘𝐴) → (𝑦 ≠ ∅ → 𝐴𝐹𝑦)) |
| 10 | neeq1 2988 | . . . . . 6 ⊢ (𝑦 = (𝐹‘𝐴) → (𝑦 ≠ ∅ ↔ (𝐹‘𝐴) ≠ ∅)) | |
| 11 | breq2 5114 | . . . . . 6 ⊢ (𝑦 = (𝐹‘𝐴) → (𝐴𝐹𝑦 ↔ 𝐴𝐹(𝐹‘𝐴))) | |
| 12 | 9, 10, 11 | 3imtr3d 293 | . . . . 5 ⊢ (𝑦 = (𝐹‘𝐴) → ((𝐹‘𝐴) ≠ ∅ → 𝐴𝐹(𝐹‘𝐴))) |
| 13 | 1, 12 | vtocle 3524 | . . . 4 ⊢ ((𝐹‘𝐴) ≠ ∅ → 𝐴𝐹(𝐹‘𝐴)) |
| 14 | 13 | a1i 11 | . . 3 ⊢ ((𝐹‘𝐴) = 𝐵 → ((𝐹‘𝐴) ≠ ∅ → 𝐴𝐹(𝐹‘𝐴))) |
| 15 | neeq1 2988 | . . 3 ⊢ ((𝐹‘𝐴) = 𝐵 → ((𝐹‘𝐴) ≠ ∅ ↔ 𝐵 ≠ ∅)) | |
| 16 | breq2 5114 | . . 3 ⊢ ((𝐹‘𝐴) = 𝐵 → (𝐴𝐹(𝐹‘𝐴) ↔ 𝐴𝐹𝐵)) | |
| 17 | 14, 15, 16 | 3imtr3d 293 | . 2 ⊢ ((𝐹‘𝐴) = 𝐵 → (𝐵 ≠ ∅ → 𝐴𝐹𝐵)) |
| 18 | 17 | com12 32 | 1 ⊢ (𝐵 ≠ ∅ → ((𝐹‘𝐴) = 𝐵 → 𝐴𝐹𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∃!weu 2562 ≠ wne 2926 ∅c0 4299 class class class wbr 5110 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 |
| This theorem is referenced by: fvbr0 6890 fvclss 7218 dcomex 10407 |
| Copyright terms: Public domain | W3C validator |