![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tz6.12i | Structured version Visualization version GIF version |
Description: Corollary of Theorem 6.12(2) of [TakeutiZaring] p. 27. (Contributed by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
tz6.12i | ⊢ (𝐵 ≠ ∅ → ((𝐹‘𝐴) = 𝐵 → 𝐴𝐹𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6915 | . . . . 5 ⊢ (𝐹‘𝐴) ∈ V | |
2 | neeq1 3000 | . . . . . . . 8 ⊢ ((𝐹‘𝐴) = 𝑦 → ((𝐹‘𝐴) ≠ ∅ ↔ 𝑦 ≠ ∅)) | |
3 | tz6.12-2 6890 | . . . . . . . . . . 11 ⊢ (¬ ∃!𝑦 𝐴𝐹𝑦 → (𝐹‘𝐴) = ∅) | |
4 | 3 | necon1ai 2965 | . . . . . . . . . 10 ⊢ ((𝐹‘𝐴) ≠ ∅ → ∃!𝑦 𝐴𝐹𝑦) |
5 | tz6.12c 6924 | . . . . . . . . . 10 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ((𝐹‘𝐴) = 𝑦 ↔ 𝐴𝐹𝑦)) | |
6 | 4, 5 | syl 17 | . . . . . . . . 9 ⊢ ((𝐹‘𝐴) ≠ ∅ → ((𝐹‘𝐴) = 𝑦 ↔ 𝐴𝐹𝑦)) |
7 | 6 | biimpcd 248 | . . . . . . . 8 ⊢ ((𝐹‘𝐴) = 𝑦 → ((𝐹‘𝐴) ≠ ∅ → 𝐴𝐹𝑦)) |
8 | 2, 7 | sylbird 259 | . . . . . . 7 ⊢ ((𝐹‘𝐴) = 𝑦 → (𝑦 ≠ ∅ → 𝐴𝐹𝑦)) |
9 | 8 | eqcoms 2736 | . . . . . 6 ⊢ (𝑦 = (𝐹‘𝐴) → (𝑦 ≠ ∅ → 𝐴𝐹𝑦)) |
10 | neeq1 3000 | . . . . . 6 ⊢ (𝑦 = (𝐹‘𝐴) → (𝑦 ≠ ∅ ↔ (𝐹‘𝐴) ≠ ∅)) | |
11 | breq2 5156 | . . . . . 6 ⊢ (𝑦 = (𝐹‘𝐴) → (𝐴𝐹𝑦 ↔ 𝐴𝐹(𝐹‘𝐴))) | |
12 | 9, 10, 11 | 3imtr3d 292 | . . . . 5 ⊢ (𝑦 = (𝐹‘𝐴) → ((𝐹‘𝐴) ≠ ∅ → 𝐴𝐹(𝐹‘𝐴))) |
13 | 1, 12 | vtocle 3543 | . . . 4 ⊢ ((𝐹‘𝐴) ≠ ∅ → 𝐴𝐹(𝐹‘𝐴)) |
14 | 13 | a1i 11 | . . 3 ⊢ ((𝐹‘𝐴) = 𝐵 → ((𝐹‘𝐴) ≠ ∅ → 𝐴𝐹(𝐹‘𝐴))) |
15 | neeq1 3000 | . . 3 ⊢ ((𝐹‘𝐴) = 𝐵 → ((𝐹‘𝐴) ≠ ∅ ↔ 𝐵 ≠ ∅)) | |
16 | breq2 5156 | . . 3 ⊢ ((𝐹‘𝐴) = 𝐵 → (𝐴𝐹(𝐹‘𝐴) ↔ 𝐴𝐹𝐵)) | |
17 | 14, 15, 16 | 3imtr3d 292 | . 2 ⊢ ((𝐹‘𝐴) = 𝐵 → (𝐵 ≠ ∅ → 𝐴𝐹𝐵)) |
18 | 17 | com12 32 | 1 ⊢ (𝐵 ≠ ∅ → ((𝐹‘𝐴) = 𝐵 → 𝐴𝐹𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∃!weu 2557 ≠ wne 2937 ∅c0 4326 class class class wbr 5152 ‘cfv 6553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-nul 5310 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-iota 6505 df-fv 6561 |
This theorem is referenced by: fvbr0 6931 fvclss 7257 dcomex 10478 |
Copyright terms: Public domain | W3C validator |