Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-eutf Structured version   Visualization version   GIF version

Theorem wl-eutf 37527
Description: Closed form of eu6 2577 with a distinctor avoiding distinct variable conditions. (Contributed by Wolf Lammen, 23-Sep-2020.)
Assertion
Ref Expression
wl-eutf ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥𝑦𝜑) → (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))

Proof of Theorem wl-eutf
StepHypRef Expression
1 nfnae 2442 . . 3 𝑥 ¬ ∀𝑥 𝑥 = 𝑦
2 nfa1 2152 . . 3 𝑥𝑥𝑦𝜑
31, 2nfan 1898 . 2 𝑥(¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥𝑦𝜑)
4 nfnae 2442 . . 3 𝑦 ¬ ∀𝑥 𝑥 = 𝑦
5 nfnf1 2155 . . . 4 𝑦𝑦𝜑
65nfal 2327 . . 3 𝑦𝑥𝑦𝜑
74, 6nfan 1898 . 2 𝑦(¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥𝑦𝜑)
8 simpl 482 . 2 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥𝑦𝜑) → ¬ ∀𝑥 𝑥 = 𝑦)
9 sp 2184 . . 3 (∀𝑥𝑦𝜑 → Ⅎ𝑦𝜑)
109adantl 481 . 2 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥𝑦𝜑) → Ⅎ𝑦𝜑)
113, 7, 8, 10wl-eudf 37526 1 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥𝑦𝜑) → (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1535  wex 1777  wnf 1781  ∃!weu 2571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-10 2141  ax-11 2158  ax-12 2178  ax-13 2380
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-mo 2543  df-eu 2572
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator