Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-eutf Structured version   Visualization version   GIF version

Theorem wl-eutf 36741
Description: Closed form of eu6 2566 with a distinctor avoiding distinct variable conditions. (Contributed by Wolf Lammen, 23-Sep-2020.)
Assertion
Ref Expression
wl-eutf ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥𝑦𝜑) → (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))

Proof of Theorem wl-eutf
StepHypRef Expression
1 nfnae 2431 . . 3 𝑥 ¬ ∀𝑥 𝑥 = 𝑦
2 nfa1 2146 . . 3 𝑥𝑥𝑦𝜑
31, 2nfan 1900 . 2 𝑥(¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥𝑦𝜑)
4 nfnae 2431 . . 3 𝑦 ¬ ∀𝑥 𝑥 = 𝑦
5 nfnf1 2149 . . . 4 𝑦𝑦𝜑
65nfal 2314 . . 3 𝑦𝑥𝑦𝜑
74, 6nfan 1900 . 2 𝑦(¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥𝑦𝜑)
8 simpl 481 . 2 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥𝑦𝜑) → ¬ ∀𝑥 𝑥 = 𝑦)
9 sp 2174 . . 3 (∀𝑥𝑦𝜑 → Ⅎ𝑦𝜑)
109adantl 480 . 2 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥𝑦𝜑) → Ⅎ𝑦𝜑)
113, 7, 8, 10wl-eudf 36740 1 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥𝑦𝜑) → (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wal 1537  wex 1779  wnf 1783  ∃!weu 2560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-10 2135  ax-11 2152  ax-12 2169  ax-13 2369
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-tru 1542  df-ex 1780  df-nf 1784  df-mo 2532  df-eu 2561
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator