| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wunin | Structured version Visualization version GIF version | ||
| Description: A weak universe is closed under binary intersections. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| wununi.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| wununi.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| wunin | ⊢ (𝜑 → (𝐴 ∩ 𝐵) ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wununi.1 | . 2 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 2 | wununi.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 3 | inss1 4186 | . . 3 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → (𝐴 ∩ 𝐵) ⊆ 𝐴) |
| 5 | 1, 2, 4 | wunss 10610 | 1 ⊢ (𝜑 → (𝐴 ∩ 𝐵) ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ∩ cin 3897 ⊆ wss 3898 WUnicwun 10598 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-in 3905 df-ss 3915 df-pw 4551 df-uni 4859 df-tr 5201 df-wun 10600 |
| This theorem is referenced by: wunress 17162 |
| Copyright terms: Public domain | W3C validator |