Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunin Structured version   Visualization version   GIF version

Theorem wunin 10133
 Description: A weak universe is closed under binary intersections. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wununi.1 (𝜑𝑈 ∈ WUni)
wununi.2 (𝜑𝐴𝑈)
Assertion
Ref Expression
wunin (𝜑 → (𝐴𝐵) ∈ 𝑈)

Proof of Theorem wunin
StepHypRef Expression
1 wununi.1 . 2 (𝜑𝑈 ∈ WUni)
2 wununi.2 . 2 (𝜑𝐴𝑈)
3 inss1 4190 . . 3 (𝐴𝐵) ⊆ 𝐴
43a1i 11 . 2 (𝜑 → (𝐴𝐵) ⊆ 𝐴)
51, 2, 4wunss 10132 1 (𝜑 → (𝐴𝐵) ∈ 𝑈)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 2115   ∩ cin 3918   ⊆ wss 3919  WUnicwun 10120 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-11 2162  ax-ext 2796  ax-sep 5189 This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1086  df-tru 1541  df-ex 1782  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-ne 3015  df-ral 3138  df-rab 3142  df-v 3482  df-in 3926  df-ss 3936  df-pw 4524  df-uni 4825  df-tr 5159  df-wun 10122 This theorem is referenced by:  wunress  16564
 Copyright terms: Public domain W3C validator