MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunin Structured version   Visualization version   GIF version

Theorem wunin 10753
Description: A weak universe is closed under binary intersections. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wununi.1 (𝜑𝑈 ∈ WUni)
wununi.2 (𝜑𝐴𝑈)
Assertion
Ref Expression
wunin (𝜑 → (𝐴𝐵) ∈ 𝑈)

Proof of Theorem wunin
StepHypRef Expression
1 wununi.1 . 2 (𝜑𝑈 ∈ WUni)
2 wununi.2 . 2 (𝜑𝐴𝑈)
3 inss1 4237 . . 3 (𝐴𝐵) ⊆ 𝐴
43a1i 11 . 2 (𝜑 → (𝐴𝐵) ⊆ 𝐴)
51, 2, 4wunss 10752 1 (𝜑 → (𝐴𝐵) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  cin 3950  wss 3951  WUnicwun 10740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-in 3958  df-ss 3968  df-pw 4602  df-uni 4908  df-tr 5260  df-wun 10742
This theorem is referenced by:  wunress  17295  wunressOLD  17296
  Copyright terms: Public domain W3C validator