| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wunin | Structured version Visualization version GIF version | ||
| Description: A weak universe is closed under binary intersections. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| wununi.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| wununi.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| wunin | ⊢ (𝜑 → (𝐴 ∩ 𝐵) ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wununi.1 | . 2 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 2 | wununi.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 3 | inss1 4203 | . . 3 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → (𝐴 ∩ 𝐵) ⊆ 𝐴) |
| 5 | 1, 2, 4 | wunss 10672 | 1 ⊢ (𝜑 → (𝐴 ∩ 𝐵) ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∩ cin 3916 ⊆ wss 3917 WUnicwun 10660 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-in 3924 df-ss 3934 df-pw 4568 df-uni 4875 df-tr 5218 df-wun 10662 |
| This theorem is referenced by: wunress 17226 |
| Copyright terms: Public domain | W3C validator |