MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunressOLD Structured version   Visualization version   GIF version

Theorem wunressOLD 17297
Description: Obsolete version of wunress 17296 as of 28-Oct-2024. Closure of structure restriction in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
wunress.1 (𝜑𝑈 ∈ WUni)
wunress.2 (𝜑 → ω ∈ 𝑈)
wunress.3 (𝜑𝑊𝑈)
Assertion
Ref Expression
wunressOLD (𝜑 → (𝑊s 𝐴) ∈ 𝑈)

Proof of Theorem wunressOLD
StepHypRef Expression
1 wunress.3 . . . . 5 (𝜑𝑊𝑈)
2 eqid 2735 . . . . . 6 (𝑊s 𝐴) = (𝑊s 𝐴)
3 eqid 2735 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
42, 3ressval 17277 . . . . 5 ((𝑊𝑈𝐴 ∈ V) → (𝑊s 𝐴) = if((Base‘𝑊) ⊆ 𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩)))
51, 4sylan 580 . . . 4 ((𝜑𝐴 ∈ V) → (𝑊s 𝐴) = if((Base‘𝑊) ⊆ 𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩)))
6 wunress.1 . . . . . . 7 (𝜑𝑈 ∈ WUni)
7 df-base 17246 . . . . . . . . 9 Base = Slot 1
8 wunress.2 . . . . . . . . . 10 (𝜑 → ω ∈ 𝑈)
96, 8wunndx 17229 . . . . . . . . 9 (𝜑 → ndx ∈ 𝑈)
107, 6, 9wunstr 17222 . . . . . . . 8 (𝜑 → (Base‘ndx) ∈ 𝑈)
11 incom 4217 . . . . . . . . 9 (𝐴 ∩ (Base‘𝑊)) = ((Base‘𝑊) ∩ 𝐴)
12 baseid 17248 . . . . . . . . . . 11 Base = Slot (Base‘ndx)
1312, 6, 1wunstr 17222 . . . . . . . . . 10 (𝜑 → (Base‘𝑊) ∈ 𝑈)
146, 13wunin 10751 . . . . . . . . 9 (𝜑 → ((Base‘𝑊) ∩ 𝐴) ∈ 𝑈)
1511, 14eqeltrid 2843 . . . . . . . 8 (𝜑 → (𝐴 ∩ (Base‘𝑊)) ∈ 𝑈)
166, 10, 15wunop 10760 . . . . . . 7 (𝜑 → ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩ ∈ 𝑈)
176, 1, 16wunsets 17211 . . . . . 6 (𝜑 → (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩) ∈ 𝑈)
181, 17ifcld 4577 . . . . 5 (𝜑 → if((Base‘𝑊) ⊆ 𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩)) ∈ 𝑈)
1918adantr 480 . . . 4 ((𝜑𝐴 ∈ V) → if((Base‘𝑊) ⊆ 𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩)) ∈ 𝑈)
205, 19eqeltrd 2839 . . 3 ((𝜑𝐴 ∈ V) → (𝑊s 𝐴) ∈ 𝑈)
2120ex 412 . 2 (𝜑 → (𝐴 ∈ V → (𝑊s 𝐴) ∈ 𝑈))
226wun0 10756 . . 3 (𝜑 → ∅ ∈ 𝑈)
23 reldmress 17276 . . . . 5 Rel dom ↾s
2423ovprc2 7471 . . . 4 𝐴 ∈ V → (𝑊s 𝐴) = ∅)
2524eleq1d 2824 . . 3 𝐴 ∈ V → ((𝑊s 𝐴) ∈ 𝑈 ↔ ∅ ∈ 𝑈))
2622, 25syl5ibrcom 247 . 2 (𝜑 → (¬ 𝐴 ∈ V → (𝑊s 𝐴) ∈ 𝑈))
2721, 26pm2.61d 179 1 (𝜑 → (𝑊s 𝐴) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  cin 3962  wss 3963  c0 4339  ifcif 4531  cop 4637  cfv 6563  (class class class)co 7431  ωcom 7887  WUnicwun 10738  1c1 11154   sSet csts 17197  ndxcnx 17227  Basecbs 17245  s cress 17274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-1cn 11211  ax-addcl 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-omul 8510  df-er 8744  df-ec 8746  df-qs 8750  df-map 8867  df-pm 8868  df-wun 10740  df-ni 10910  df-pli 10911  df-mi 10912  df-lti 10913  df-plpq 10946  df-mpq 10947  df-ltpq 10948  df-enq 10949  df-nq 10950  df-erq 10951  df-plq 10952  df-mq 10953  df-1nq 10954  df-rq 10955  df-ltnq 10956  df-np 11019  df-plp 11021  df-ltp 11023  df-enr 11093  df-nr 11094  df-c 11159  df-nn 12265  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator