MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunressOLD Structured version   Visualization version   GIF version

Theorem wunressOLD 16862
Description: Obsolete proof of wunress 16861 as of 28-Oct-2024. Closure of structure restriction in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
wunress.1 (𝜑𝑈 ∈ WUni)
wunress.2 (𝜑 → ω ∈ 𝑈)
wunress.3 (𝜑𝑊𝑈)
Assertion
Ref Expression
wunressOLD (𝜑 → (𝑊s 𝐴) ∈ 𝑈)

Proof of Theorem wunressOLD
StepHypRef Expression
1 wunress.3 . . . . 5 (𝜑𝑊𝑈)
2 eqid 2739 . . . . . 6 (𝑊s 𝐴) = (𝑊s 𝐴)
3 eqid 2739 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
42, 3ressval 16845 . . . . 5 ((𝑊𝑈𝐴 ∈ V) → (𝑊s 𝐴) = if((Base‘𝑊) ⊆ 𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩)))
51, 4sylan 583 . . . 4 ((𝜑𝐴 ∈ V) → (𝑊s 𝐴) = if((Base‘𝑊) ⊆ 𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩)))
6 wunress.1 . . . . . . 7 (𝜑𝑈 ∈ WUni)
7 df-base 16816 . . . . . . . . 9 Base = Slot 1
8 wunress.2 . . . . . . . . . 10 (𝜑 → ω ∈ 𝑈)
96, 8wunndx 16799 . . . . . . . . 9 (𝜑 → ndx ∈ 𝑈)
107, 6, 9wunstr 16792 . . . . . . . 8 (𝜑 → (Base‘ndx) ∈ 𝑈)
11 incom 4132 . . . . . . . . 9 (𝐴 ∩ (Base‘𝑊)) = ((Base‘𝑊) ∩ 𝐴)
12 baseid 16818 . . . . . . . . . . 11 Base = Slot (Base‘ndx)
1312, 6, 1wunstr 16792 . . . . . . . . . 10 (𝜑 → (Base‘𝑊) ∈ 𝑈)
146, 13wunin 10375 . . . . . . . . 9 (𝜑 → ((Base‘𝑊) ∩ 𝐴) ∈ 𝑈)
1511, 14eqeltrid 2844 . . . . . . . 8 (𝜑 → (𝐴 ∩ (Base‘𝑊)) ∈ 𝑈)
166, 10, 15wunop 10384 . . . . . . 7 (𝜑 → ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩ ∈ 𝑈)
176, 1, 16wunsets 16781 . . . . . 6 (𝜑 → (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩) ∈ 𝑈)
181, 17ifcld 4502 . . . . 5 (𝜑 → if((Base‘𝑊) ⊆ 𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩)) ∈ 𝑈)
1918adantr 484 . . . 4 ((𝜑𝐴 ∈ V) → if((Base‘𝑊) ⊆ 𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩)) ∈ 𝑈)
205, 19eqeltrd 2840 . . 3 ((𝜑𝐴 ∈ V) → (𝑊s 𝐴) ∈ 𝑈)
2120ex 416 . 2 (𝜑 → (𝐴 ∈ V → (𝑊s 𝐴) ∈ 𝑈))
226wun0 10380 . . 3 (𝜑 → ∅ ∈ 𝑈)
23 reldmress 16844 . . . . 5 Rel dom ↾s
2423ovprc2 7292 . . . 4 𝐴 ∈ V → (𝑊s 𝐴) = ∅)
2524eleq1d 2824 . . 3 𝐴 ∈ V → ((𝑊s 𝐴) ∈ 𝑈 ↔ ∅ ∈ 𝑈))
2622, 25syl5ibrcom 250 . 2 (𝜑 → (¬ 𝐴 ∈ V → (𝑊s 𝐴) ∈ 𝑈))
2721, 26pm2.61d 182 1 (𝜑 → (𝑊s 𝐴) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wcel 2112  Vcvv 3423  cin 3883  wss 3884  c0 4254  ifcif 4456  cop 4564  cfv 6415  (class class class)co 7252  ωcom 7684  WUnicwun 10362  1c1 10778   sSet csts 16767  ndxcnx 16797  Basecbs 16815  s cress 16842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-sep 5216  ax-nul 5223  ax-pow 5282  ax-pr 5346  ax-un 7563  ax-inf2 9304  ax-cnex 10833  ax-1cn 10835  ax-addcl 10837
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3425  df-sbc 3713  df-csb 3830  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4255  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5153  df-tr 5186  df-id 5479  df-eprel 5485  df-po 5493  df-so 5494  df-fr 5534  df-we 5536  df-xp 5585  df-rel 5586  df-cnv 5587  df-co 5588  df-dm 5589  df-rn 5590  df-res 5591  df-ima 5592  df-pred 6189  df-ord 6251  df-on 6252  df-lim 6253  df-suc 6254  df-iota 6373  df-fun 6417  df-fn 6418  df-f 6419  df-f1 6420  df-fo 6421  df-f1o 6422  df-fv 6423  df-ov 7255  df-oprab 7256  df-mpo 7257  df-om 7685  df-1st 7801  df-2nd 7802  df-wrecs 8089  df-recs 8150  df-rdg 8188  df-1o 8244  df-oadd 8248  df-omul 8249  df-er 8433  df-ec 8435  df-qs 8439  df-map 8552  df-pm 8553  df-wun 10364  df-ni 10534  df-pli 10535  df-mi 10536  df-lti 10537  df-plpq 10570  df-mpq 10571  df-ltpq 10572  df-enq 10573  df-nq 10574  df-erq 10575  df-plq 10576  df-mq 10577  df-1nq 10578  df-rq 10579  df-ltnq 10580  df-np 10643  df-plp 10645  df-ltp 10647  df-enr 10717  df-nr 10718  df-c 10783  df-nn 11879  df-sets 16768  df-slot 16786  df-ndx 16798  df-base 16816  df-ress 16843
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator