![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wunressOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of wunress 17200 as of 28-Oct-2024. Closure of structure restriction in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
wunress.1 | β’ (π β π β WUni) |
wunress.2 | β’ (π β Ο β π) |
wunress.3 | β’ (π β π β π) |
Ref | Expression |
---|---|
wunressOLD | β’ (π β (π βΎs π΄) β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wunress.3 | . . . . 5 β’ (π β π β π) | |
2 | eqid 2731 | . . . . . 6 β’ (π βΎs π΄) = (π βΎs π΄) | |
3 | eqid 2731 | . . . . . 6 β’ (Baseβπ) = (Baseβπ) | |
4 | 2, 3 | ressval 17181 | . . . . 5 β’ ((π β π β§ π΄ β V) β (π βΎs π΄) = if((Baseβπ) β π΄, π, (π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©))) |
5 | 1, 4 | sylan 579 | . . . 4 β’ ((π β§ π΄ β V) β (π βΎs π΄) = if((Baseβπ) β π΄, π, (π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©))) |
6 | wunress.1 | . . . . . . 7 β’ (π β π β WUni) | |
7 | df-base 17150 | . . . . . . . . 9 β’ Base = Slot 1 | |
8 | wunress.2 | . . . . . . . . . 10 β’ (π β Ο β π) | |
9 | 6, 8 | wunndx 17133 | . . . . . . . . 9 β’ (π β ndx β π) |
10 | 7, 6, 9 | wunstr 17126 | . . . . . . . 8 β’ (π β (Baseβndx) β π) |
11 | incom 4202 | . . . . . . . . 9 β’ (π΄ β© (Baseβπ)) = ((Baseβπ) β© π΄) | |
12 | baseid 17152 | . . . . . . . . . . 11 β’ Base = Slot (Baseβndx) | |
13 | 12, 6, 1 | wunstr 17126 | . . . . . . . . . 10 β’ (π β (Baseβπ) β π) |
14 | 6, 13 | wunin 10711 | . . . . . . . . 9 β’ (π β ((Baseβπ) β© π΄) β π) |
15 | 11, 14 | eqeltrid 2836 | . . . . . . . 8 β’ (π β (π΄ β© (Baseβπ)) β π) |
16 | 6, 10, 15 | wunop 10720 | . . . . . . 7 β’ (π β β¨(Baseβndx), (π΄ β© (Baseβπ))β© β π) |
17 | 6, 1, 16 | wunsets 17115 | . . . . . 6 β’ (π β (π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©) β π) |
18 | 1, 17 | ifcld 4575 | . . . . 5 β’ (π β if((Baseβπ) β π΄, π, (π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©)) β π) |
19 | 18 | adantr 480 | . . . 4 β’ ((π β§ π΄ β V) β if((Baseβπ) β π΄, π, (π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©)) β π) |
20 | 5, 19 | eqeltrd 2832 | . . 3 β’ ((π β§ π΄ β V) β (π βΎs π΄) β π) |
21 | 20 | ex 412 | . 2 β’ (π β (π΄ β V β (π βΎs π΄) β π)) |
22 | 6 | wun0 10716 | . . 3 β’ (π β β β π) |
23 | reldmress 17180 | . . . . 5 β’ Rel dom βΎs | |
24 | 23 | ovprc2 7452 | . . . 4 β’ (Β¬ π΄ β V β (π βΎs π΄) = β ) |
25 | 24 | eleq1d 2817 | . . 3 β’ (Β¬ π΄ β V β ((π βΎs π΄) β π β β β π)) |
26 | 22, 25 | syl5ibrcom 246 | . 2 β’ (π β (Β¬ π΄ β V β (π βΎs π΄) β π)) |
27 | 21, 26 | pm2.61d 179 | 1 β’ (π β (π βΎs π΄) β π) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 Vcvv 3473 β© cin 3948 β wss 3949 β c0 4323 ifcif 4529 β¨cop 4635 βcfv 6544 (class class class)co 7412 Οcom 7858 WUnicwun 10698 1c1 11114 sSet csts 17101 ndxcnx 17131 Basecbs 17149 βΎs cress 17178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-inf2 9639 ax-cnex 11169 ax-1cn 11171 ax-addcl 11173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-oadd 8473 df-omul 8474 df-er 8706 df-ec 8708 df-qs 8712 df-map 8825 df-pm 8826 df-wun 10700 df-ni 10870 df-pli 10871 df-mi 10872 df-lti 10873 df-plpq 10906 df-mpq 10907 df-ltpq 10908 df-enq 10909 df-nq 10910 df-erq 10911 df-plq 10912 df-mq 10913 df-1nq 10914 df-rq 10915 df-ltnq 10916 df-np 10979 df-plp 10981 df-ltp 10983 df-enr 11053 df-nr 11054 df-c 11119 df-nn 12218 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |