Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wunressOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of wunress 16861 as of 28-Oct-2024. Closure of structure restriction in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
wunress.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wunress.2 | ⊢ (𝜑 → ω ∈ 𝑈) |
wunress.3 | ⊢ (𝜑 → 𝑊 ∈ 𝑈) |
Ref | Expression |
---|---|
wunressOLD | ⊢ (𝜑 → (𝑊 ↾s 𝐴) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wunress.3 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ 𝑈) | |
2 | eqid 2739 | . . . . . 6 ⊢ (𝑊 ↾s 𝐴) = (𝑊 ↾s 𝐴) | |
3 | eqid 2739 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
4 | 2, 3 | ressval 16845 | . . . . 5 ⊢ ((𝑊 ∈ 𝑈 ∧ 𝐴 ∈ V) → (𝑊 ↾s 𝐴) = if((Base‘𝑊) ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉))) |
5 | 1, 4 | sylan 583 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ V) → (𝑊 ↾s 𝐴) = if((Base‘𝑊) ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉))) |
6 | wunress.1 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
7 | df-base 16816 | . . . . . . . . 9 ⊢ Base = Slot 1 | |
8 | wunress.2 | . . . . . . . . . 10 ⊢ (𝜑 → ω ∈ 𝑈) | |
9 | 6, 8 | wunndx 16799 | . . . . . . . . 9 ⊢ (𝜑 → ndx ∈ 𝑈) |
10 | 7, 6, 9 | wunstr 16792 | . . . . . . . 8 ⊢ (𝜑 → (Base‘ndx) ∈ 𝑈) |
11 | incom 4132 | . . . . . . . . 9 ⊢ (𝐴 ∩ (Base‘𝑊)) = ((Base‘𝑊) ∩ 𝐴) | |
12 | baseid 16818 | . . . . . . . . . . 11 ⊢ Base = Slot (Base‘ndx) | |
13 | 12, 6, 1 | wunstr 16792 | . . . . . . . . . 10 ⊢ (𝜑 → (Base‘𝑊) ∈ 𝑈) |
14 | 6, 13 | wunin 10375 | . . . . . . . . 9 ⊢ (𝜑 → ((Base‘𝑊) ∩ 𝐴) ∈ 𝑈) |
15 | 11, 14 | eqeltrid 2844 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 ∩ (Base‘𝑊)) ∈ 𝑈) |
16 | 6, 10, 15 | wunop 10384 | . . . . . . 7 ⊢ (𝜑 → 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉 ∈ 𝑈) |
17 | 6, 1, 16 | wunsets 16781 | . . . . . 6 ⊢ (𝜑 → (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉) ∈ 𝑈) |
18 | 1, 17 | ifcld 4502 | . . . . 5 ⊢ (𝜑 → if((Base‘𝑊) ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) ∈ 𝑈) |
19 | 18 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ V) → if((Base‘𝑊) ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) ∈ 𝑈) |
20 | 5, 19 | eqeltrd 2840 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ V) → (𝑊 ↾s 𝐴) ∈ 𝑈) |
21 | 20 | ex 416 | . 2 ⊢ (𝜑 → (𝐴 ∈ V → (𝑊 ↾s 𝐴) ∈ 𝑈)) |
22 | 6 | wun0 10380 | . . 3 ⊢ (𝜑 → ∅ ∈ 𝑈) |
23 | reldmress 16844 | . . . . 5 ⊢ Rel dom ↾s | |
24 | 23 | ovprc2 7292 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (𝑊 ↾s 𝐴) = ∅) |
25 | 24 | eleq1d 2824 | . . 3 ⊢ (¬ 𝐴 ∈ V → ((𝑊 ↾s 𝐴) ∈ 𝑈 ↔ ∅ ∈ 𝑈)) |
26 | 22, 25 | syl5ibrcom 250 | . 2 ⊢ (𝜑 → (¬ 𝐴 ∈ V → (𝑊 ↾s 𝐴) ∈ 𝑈)) |
27 | 21, 26 | pm2.61d 182 | 1 ⊢ (𝜑 → (𝑊 ↾s 𝐴) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2112 Vcvv 3423 ∩ cin 3883 ⊆ wss 3884 ∅c0 4254 ifcif 4456 〈cop 4564 ‘cfv 6415 (class class class)co 7252 ωcom 7684 WUnicwun 10362 1c1 10778 sSet csts 16767 ndxcnx 16797 Basecbs 16815 ↾s cress 16842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 ax-inf2 9304 ax-cnex 10833 ax-1cn 10835 ax-addcl 10837 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-pred 6189 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-ov 7255 df-oprab 7256 df-mpo 7257 df-om 7685 df-1st 7801 df-2nd 7802 df-wrecs 8089 df-recs 8150 df-rdg 8188 df-1o 8244 df-oadd 8248 df-omul 8249 df-er 8433 df-ec 8435 df-qs 8439 df-map 8552 df-pm 8553 df-wun 10364 df-ni 10534 df-pli 10535 df-mi 10536 df-lti 10537 df-plpq 10570 df-mpq 10571 df-ltpq 10572 df-enq 10573 df-nq 10574 df-erq 10575 df-plq 10576 df-mq 10577 df-1nq 10578 df-rq 10579 df-ltnq 10580 df-np 10643 df-plp 10645 df-ltp 10647 df-enr 10717 df-nr 10718 df-c 10783 df-nn 11879 df-sets 16768 df-slot 16786 df-ndx 16798 df-base 16816 df-ress 16843 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |