![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wunressOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of wunress 17264 as of 28-Oct-2024. Closure of structure restriction in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
wunress.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wunress.2 | ⊢ (𝜑 → ω ∈ 𝑈) |
wunress.3 | ⊢ (𝜑 → 𝑊 ∈ 𝑈) |
Ref | Expression |
---|---|
wunressOLD | ⊢ (𝜑 → (𝑊 ↾s 𝐴) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wunress.3 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ 𝑈) | |
2 | eqid 2726 | . . . . . 6 ⊢ (𝑊 ↾s 𝐴) = (𝑊 ↾s 𝐴) | |
3 | eqid 2726 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
4 | 2, 3 | ressval 17245 | . . . . 5 ⊢ ((𝑊 ∈ 𝑈 ∧ 𝐴 ∈ V) → (𝑊 ↾s 𝐴) = if((Base‘𝑊) ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉))) |
5 | 1, 4 | sylan 578 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ V) → (𝑊 ↾s 𝐴) = if((Base‘𝑊) ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉))) |
6 | wunress.1 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
7 | df-base 17214 | . . . . . . . . 9 ⊢ Base = Slot 1 | |
8 | wunress.2 | . . . . . . . . . 10 ⊢ (𝜑 → ω ∈ 𝑈) | |
9 | 6, 8 | wunndx 17197 | . . . . . . . . 9 ⊢ (𝜑 → ndx ∈ 𝑈) |
10 | 7, 6, 9 | wunstr 17190 | . . . . . . . 8 ⊢ (𝜑 → (Base‘ndx) ∈ 𝑈) |
11 | incom 4202 | . . . . . . . . 9 ⊢ (𝐴 ∩ (Base‘𝑊)) = ((Base‘𝑊) ∩ 𝐴) | |
12 | baseid 17216 | . . . . . . . . . . 11 ⊢ Base = Slot (Base‘ndx) | |
13 | 12, 6, 1 | wunstr 17190 | . . . . . . . . . 10 ⊢ (𝜑 → (Base‘𝑊) ∈ 𝑈) |
14 | 6, 13 | wunin 10756 | . . . . . . . . 9 ⊢ (𝜑 → ((Base‘𝑊) ∩ 𝐴) ∈ 𝑈) |
15 | 11, 14 | eqeltrid 2830 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 ∩ (Base‘𝑊)) ∈ 𝑈) |
16 | 6, 10, 15 | wunop 10765 | . . . . . . 7 ⊢ (𝜑 → 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉 ∈ 𝑈) |
17 | 6, 1, 16 | wunsets 17179 | . . . . . 6 ⊢ (𝜑 → (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉) ∈ 𝑈) |
18 | 1, 17 | ifcld 4579 | . . . . 5 ⊢ (𝜑 → if((Base‘𝑊) ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) ∈ 𝑈) |
19 | 18 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ V) → if((Base‘𝑊) ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) ∈ 𝑈) |
20 | 5, 19 | eqeltrd 2826 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ V) → (𝑊 ↾s 𝐴) ∈ 𝑈) |
21 | 20 | ex 411 | . 2 ⊢ (𝜑 → (𝐴 ∈ V → (𝑊 ↾s 𝐴) ∈ 𝑈)) |
22 | 6 | wun0 10761 | . . 3 ⊢ (𝜑 → ∅ ∈ 𝑈) |
23 | reldmress 17244 | . . . . 5 ⊢ Rel dom ↾s | |
24 | 23 | ovprc2 7464 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (𝑊 ↾s 𝐴) = ∅) |
25 | 24 | eleq1d 2811 | . . 3 ⊢ (¬ 𝐴 ∈ V → ((𝑊 ↾s 𝐴) ∈ 𝑈 ↔ ∅ ∈ 𝑈)) |
26 | 22, 25 | syl5ibrcom 246 | . 2 ⊢ (𝜑 → (¬ 𝐴 ∈ V → (𝑊 ↾s 𝐴) ∈ 𝑈)) |
27 | 21, 26 | pm2.61d 179 | 1 ⊢ (𝜑 → (𝑊 ↾s 𝐴) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 Vcvv 3462 ∩ cin 3946 ⊆ wss 3947 ∅c0 4325 ifcif 4533 〈cop 4639 ‘cfv 6554 (class class class)co 7424 ωcom 7876 WUnicwun 10743 1c1 11159 sSet csts 17165 ndxcnx 17195 Basecbs 17213 ↾s cress 17242 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-inf2 9684 ax-cnex 11214 ax-1cn 11216 ax-addcl 11218 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-oadd 8500 df-omul 8501 df-er 8734 df-ec 8736 df-qs 8740 df-map 8857 df-pm 8858 df-wun 10745 df-ni 10915 df-pli 10916 df-mi 10917 df-lti 10918 df-plpq 10951 df-mpq 10952 df-ltpq 10953 df-enq 10954 df-nq 10955 df-erq 10956 df-plq 10957 df-mq 10958 df-1nq 10959 df-rq 10960 df-ltnq 10961 df-np 11024 df-plp 11026 df-ltp 11028 df-enr 11098 df-nr 11099 df-c 11164 df-nn 12265 df-sets 17166 df-slot 17184 df-ndx 17196 df-base 17214 df-ress 17243 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |