| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wunress | Structured version Visualization version GIF version | ||
| Description: Closure of structure restriction in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof shortened by AV, 28-Oct-2024.) |
| Ref | Expression |
|---|---|
| wunress.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| wunress.2 | ⊢ (𝜑 → ω ∈ 𝑈) |
| wunress.3 | ⊢ (𝜑 → 𝑊 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| wunress | ⊢ (𝜑 → (𝑊 ↾s 𝐴) ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wunress.3 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ 𝑈) | |
| 2 | eqid 2731 | . . . . . 6 ⊢ (𝑊 ↾s 𝐴) = (𝑊 ↾s 𝐴) | |
| 3 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 4 | 2, 3 | ressval 17144 | . . . . 5 ⊢ ((𝑊 ∈ 𝑈 ∧ 𝐴 ∈ V) → (𝑊 ↾s 𝐴) = if((Base‘𝑊) ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉))) |
| 5 | 1, 4 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ V) → (𝑊 ↾s 𝐴) = if((Base‘𝑊) ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉))) |
| 6 | wunress.1 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 7 | wunress.2 | . . . . . . . . 9 ⊢ (𝜑 → ω ∈ 𝑈) | |
| 8 | 6, 7 | basndxelwund 17131 | . . . . . . . 8 ⊢ (𝜑 → (Base‘ndx) ∈ 𝑈) |
| 9 | incom 4156 | . . . . . . . . 9 ⊢ (𝐴 ∩ (Base‘𝑊)) = ((Base‘𝑊) ∩ 𝐴) | |
| 10 | baseid 17123 | . . . . . . . . . . 11 ⊢ Base = Slot (Base‘ndx) | |
| 11 | 10, 6, 1 | wunstr 17099 | . . . . . . . . . 10 ⊢ (𝜑 → (Base‘𝑊) ∈ 𝑈) |
| 12 | 6, 11 | wunin 10604 | . . . . . . . . 9 ⊢ (𝜑 → ((Base‘𝑊) ∩ 𝐴) ∈ 𝑈) |
| 13 | 9, 12 | eqeltrid 2835 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 ∩ (Base‘𝑊)) ∈ 𝑈) |
| 14 | 6, 8, 13 | wunop 10613 | . . . . . . 7 ⊢ (𝜑 → 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉 ∈ 𝑈) |
| 15 | 6, 1, 14 | wunsets 17088 | . . . . . 6 ⊢ (𝜑 → (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉) ∈ 𝑈) |
| 16 | 1, 15 | ifcld 4519 | . . . . 5 ⊢ (𝜑 → if((Base‘𝑊) ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) ∈ 𝑈) |
| 17 | 16 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ V) → if((Base‘𝑊) ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) ∈ 𝑈) |
| 18 | 5, 17 | eqeltrd 2831 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ V) → (𝑊 ↾s 𝐴) ∈ 𝑈) |
| 19 | 18 | ex 412 | . 2 ⊢ (𝜑 → (𝐴 ∈ V → (𝑊 ↾s 𝐴) ∈ 𝑈)) |
| 20 | 6 | wun0 10609 | . . 3 ⊢ (𝜑 → ∅ ∈ 𝑈) |
| 21 | reldmress 17143 | . . . . 5 ⊢ Rel dom ↾s | |
| 22 | 21 | ovprc2 7386 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (𝑊 ↾s 𝐴) = ∅) |
| 23 | 22 | eleq1d 2816 | . . 3 ⊢ (¬ 𝐴 ∈ V → ((𝑊 ↾s 𝐴) ∈ 𝑈 ↔ ∅ ∈ 𝑈)) |
| 24 | 20, 23 | syl5ibrcom 247 | . 2 ⊢ (𝜑 → (¬ 𝐴 ∈ V → (𝑊 ↾s 𝐴) ∈ 𝑈)) |
| 25 | 19, 24 | pm2.61d 179 | 1 ⊢ (𝜑 → (𝑊 ↾s 𝐴) ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∩ cin 3896 ⊆ wss 3897 ∅c0 4280 ifcif 4472 〈cop 4579 ‘cfv 6481 (class class class)co 7346 ωcom 7796 WUnicwun 10591 sSet csts 17074 ndxcnx 17104 Basecbs 17120 ↾s cress 17141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-1cn 11064 ax-addcl 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-omul 8390 df-er 8622 df-ec 8624 df-qs 8628 df-map 8752 df-pm 8753 df-wun 10593 df-ni 10763 df-pli 10764 df-mi 10765 df-lti 10766 df-plpq 10799 df-mpq 10800 df-ltpq 10801 df-enq 10802 df-nq 10803 df-erq 10804 df-plq 10805 df-mq 10806 df-1nq 10807 df-rq 10808 df-ltnq 10809 df-np 10872 df-plp 10874 df-ltp 10876 df-enr 10946 df-nr 10947 df-c 11012 df-nn 12126 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |