MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunress Structured version   Visualization version   GIF version

Theorem wunress 17195
Description: Closure of structure restriction in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof shortened by AV, 28-Oct-2024.)
Hypotheses
Ref Expression
wunress.1 (𝜑𝑈 ∈ WUni)
wunress.2 (𝜑 → ω ∈ 𝑈)
wunress.3 (𝜑𝑊𝑈)
Assertion
Ref Expression
wunress (𝜑 → (𝑊s 𝐴) ∈ 𝑈)

Proof of Theorem wunress
StepHypRef Expression
1 wunress.3 . . . . 5 (𝜑𝑊𝑈)
2 eqid 2729 . . . . . 6 (𝑊s 𝐴) = (𝑊s 𝐴)
3 eqid 2729 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
42, 3ressval 17179 . . . . 5 ((𝑊𝑈𝐴 ∈ V) → (𝑊s 𝐴) = if((Base‘𝑊) ⊆ 𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩)))
51, 4sylan 580 . . . 4 ((𝜑𝐴 ∈ V) → (𝑊s 𝐴) = if((Base‘𝑊) ⊆ 𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩)))
6 wunress.1 . . . . . . 7 (𝜑𝑈 ∈ WUni)
7 wunress.2 . . . . . . . . 9 (𝜑 → ω ∈ 𝑈)
86, 7basndxelwund 17166 . . . . . . . 8 (𝜑 → (Base‘ndx) ∈ 𝑈)
9 incom 4168 . . . . . . . . 9 (𝐴 ∩ (Base‘𝑊)) = ((Base‘𝑊) ∩ 𝐴)
10 baseid 17158 . . . . . . . . . . 11 Base = Slot (Base‘ndx)
1110, 6, 1wunstr 17134 . . . . . . . . . 10 (𝜑 → (Base‘𝑊) ∈ 𝑈)
126, 11wunin 10642 . . . . . . . . 9 (𝜑 → ((Base‘𝑊) ∩ 𝐴) ∈ 𝑈)
139, 12eqeltrid 2832 . . . . . . . 8 (𝜑 → (𝐴 ∩ (Base‘𝑊)) ∈ 𝑈)
146, 8, 13wunop 10651 . . . . . . 7 (𝜑 → ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩ ∈ 𝑈)
156, 1, 14wunsets 17123 . . . . . 6 (𝜑 → (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩) ∈ 𝑈)
161, 15ifcld 4531 . . . . 5 (𝜑 → if((Base‘𝑊) ⊆ 𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩)) ∈ 𝑈)
1716adantr 480 . . . 4 ((𝜑𝐴 ∈ V) → if((Base‘𝑊) ⊆ 𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩)) ∈ 𝑈)
185, 17eqeltrd 2828 . . 3 ((𝜑𝐴 ∈ V) → (𝑊s 𝐴) ∈ 𝑈)
1918ex 412 . 2 (𝜑 → (𝐴 ∈ V → (𝑊s 𝐴) ∈ 𝑈))
206wun0 10647 . . 3 (𝜑 → ∅ ∈ 𝑈)
21 reldmress 17178 . . . . 5 Rel dom ↾s
2221ovprc2 7409 . . . 4 𝐴 ∈ V → (𝑊s 𝐴) = ∅)
2322eleq1d 2813 . . 3 𝐴 ∈ V → ((𝑊s 𝐴) ∈ 𝑈 ↔ ∅ ∈ 𝑈))
2420, 23syl5ibrcom 247 . 2 (𝜑 → (¬ 𝐴 ∈ V → (𝑊s 𝐴) ∈ 𝑈))
2519, 24pm2.61d 179 1 (𝜑 → (𝑊s 𝐴) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  cin 3910  wss 3911  c0 4292  ifcif 4484  cop 4591  cfv 6499  (class class class)co 7369  ωcom 7822  WUnicwun 10629   sSet csts 17109  ndxcnx 17139  Basecbs 17155  s cress 17176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-1cn 11102  ax-addcl 11104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-omul 8416  df-er 8648  df-ec 8650  df-qs 8654  df-map 8778  df-pm 8779  df-wun 10631  df-ni 10801  df-pli 10802  df-mi 10803  df-lti 10804  df-plpq 10837  df-mpq 10838  df-ltpq 10839  df-enq 10840  df-nq 10841  df-erq 10842  df-plq 10843  df-mq 10844  df-1nq 10845  df-rq 10846  df-ltnq 10847  df-np 10910  df-plp 10912  df-ltp 10914  df-enr 10984  df-nr 10985  df-c 11050  df-nn 12163  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator