| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wunress | Structured version Visualization version GIF version | ||
| Description: Closure of structure restriction in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof shortened by AV, 28-Oct-2024.) |
| Ref | Expression |
|---|---|
| wunress.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| wunress.2 | ⊢ (𝜑 → ω ∈ 𝑈) |
| wunress.3 | ⊢ (𝜑 → 𝑊 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| wunress | ⊢ (𝜑 → (𝑊 ↾s 𝐴) ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wunress.3 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ 𝑈) | |
| 2 | eqid 2729 | . . . . . 6 ⊢ (𝑊 ↾s 𝐴) = (𝑊 ↾s 𝐴) | |
| 3 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 4 | 2, 3 | ressval 17179 | . . . . 5 ⊢ ((𝑊 ∈ 𝑈 ∧ 𝐴 ∈ V) → (𝑊 ↾s 𝐴) = if((Base‘𝑊) ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉))) |
| 5 | 1, 4 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ V) → (𝑊 ↾s 𝐴) = if((Base‘𝑊) ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉))) |
| 6 | wunress.1 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 7 | wunress.2 | . . . . . . . . 9 ⊢ (𝜑 → ω ∈ 𝑈) | |
| 8 | 6, 7 | basndxelwund 17166 | . . . . . . . 8 ⊢ (𝜑 → (Base‘ndx) ∈ 𝑈) |
| 9 | incom 4168 | . . . . . . . . 9 ⊢ (𝐴 ∩ (Base‘𝑊)) = ((Base‘𝑊) ∩ 𝐴) | |
| 10 | baseid 17158 | . . . . . . . . . . 11 ⊢ Base = Slot (Base‘ndx) | |
| 11 | 10, 6, 1 | wunstr 17134 | . . . . . . . . . 10 ⊢ (𝜑 → (Base‘𝑊) ∈ 𝑈) |
| 12 | 6, 11 | wunin 10642 | . . . . . . . . 9 ⊢ (𝜑 → ((Base‘𝑊) ∩ 𝐴) ∈ 𝑈) |
| 13 | 9, 12 | eqeltrid 2832 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 ∩ (Base‘𝑊)) ∈ 𝑈) |
| 14 | 6, 8, 13 | wunop 10651 | . . . . . . 7 ⊢ (𝜑 → 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉 ∈ 𝑈) |
| 15 | 6, 1, 14 | wunsets 17123 | . . . . . 6 ⊢ (𝜑 → (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉) ∈ 𝑈) |
| 16 | 1, 15 | ifcld 4531 | . . . . 5 ⊢ (𝜑 → if((Base‘𝑊) ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) ∈ 𝑈) |
| 17 | 16 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ V) → if((Base‘𝑊) ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) ∈ 𝑈) |
| 18 | 5, 17 | eqeltrd 2828 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ V) → (𝑊 ↾s 𝐴) ∈ 𝑈) |
| 19 | 18 | ex 412 | . 2 ⊢ (𝜑 → (𝐴 ∈ V → (𝑊 ↾s 𝐴) ∈ 𝑈)) |
| 20 | 6 | wun0 10647 | . . 3 ⊢ (𝜑 → ∅ ∈ 𝑈) |
| 21 | reldmress 17178 | . . . . 5 ⊢ Rel dom ↾s | |
| 22 | 21 | ovprc2 7409 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (𝑊 ↾s 𝐴) = ∅) |
| 23 | 22 | eleq1d 2813 | . . 3 ⊢ (¬ 𝐴 ∈ V → ((𝑊 ↾s 𝐴) ∈ 𝑈 ↔ ∅ ∈ 𝑈)) |
| 24 | 20, 23 | syl5ibrcom 247 | . 2 ⊢ (𝜑 → (¬ 𝐴 ∈ V → (𝑊 ↾s 𝐴) ∈ 𝑈)) |
| 25 | 19, 24 | pm2.61d 179 | 1 ⊢ (𝜑 → (𝑊 ↾s 𝐴) ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∩ cin 3910 ⊆ wss 3911 ∅c0 4292 ifcif 4484 〈cop 4591 ‘cfv 6499 (class class class)co 7369 ωcom 7822 WUnicwun 10629 sSet csts 17109 ndxcnx 17139 Basecbs 17155 ↾s cress 17176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-1cn 11102 ax-addcl 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-oadd 8415 df-omul 8416 df-er 8648 df-ec 8650 df-qs 8654 df-map 8778 df-pm 8779 df-wun 10631 df-ni 10801 df-pli 10802 df-mi 10803 df-lti 10804 df-plpq 10837 df-mpq 10838 df-ltpq 10839 df-enq 10840 df-nq 10841 df-erq 10842 df-plq 10843 df-mq 10844 df-1nq 10845 df-rq 10846 df-ltnq 10847 df-np 10910 df-plp 10912 df-ltp 10914 df-enr 10984 df-nr 10985 df-c 11050 df-nn 12163 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |