![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wunress | Structured version Visualization version GIF version |
Description: Closure of structure restriction in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof shortened by AV, 28-Oct-2024.) |
Ref | Expression |
---|---|
wunress.1 | β’ (π β π β WUni) |
wunress.2 | β’ (π β Ο β π) |
wunress.3 | β’ (π β π β π) |
Ref | Expression |
---|---|
wunress | β’ (π β (π βΎs π΄) β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wunress.3 | . . . . 5 β’ (π β π β π) | |
2 | eqid 2733 | . . . . . 6 β’ (π βΎs π΄) = (π βΎs π΄) | |
3 | eqid 2733 | . . . . . 6 β’ (Baseβπ) = (Baseβπ) | |
4 | 2, 3 | ressval 17176 | . . . . 5 β’ ((π β π β§ π΄ β V) β (π βΎs π΄) = if((Baseβπ) β π΄, π, (π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©))) |
5 | 1, 4 | sylan 581 | . . . 4 β’ ((π β§ π΄ β V) β (π βΎs π΄) = if((Baseβπ) β π΄, π, (π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©))) |
6 | wunress.1 | . . . . . . 7 β’ (π β π β WUni) | |
7 | wunress.2 | . . . . . . . . 9 β’ (π β Ο β π) | |
8 | 6, 7 | basndxelwund 17156 | . . . . . . . 8 β’ (π β (Baseβndx) β π) |
9 | incom 4202 | . . . . . . . . 9 β’ (π΄ β© (Baseβπ)) = ((Baseβπ) β© π΄) | |
10 | baseid 17147 | . . . . . . . . . . 11 β’ Base = Slot (Baseβndx) | |
11 | 10, 6, 1 | wunstr 17121 | . . . . . . . . . 10 β’ (π β (Baseβπ) β π) |
12 | 6, 11 | wunin 10708 | . . . . . . . . 9 β’ (π β ((Baseβπ) β© π΄) β π) |
13 | 9, 12 | eqeltrid 2838 | . . . . . . . 8 β’ (π β (π΄ β© (Baseβπ)) β π) |
14 | 6, 8, 13 | wunop 10717 | . . . . . . 7 β’ (π β β¨(Baseβndx), (π΄ β© (Baseβπ))β© β π) |
15 | 6, 1, 14 | wunsets 17110 | . . . . . 6 β’ (π β (π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©) β π) |
16 | 1, 15 | ifcld 4575 | . . . . 5 β’ (π β if((Baseβπ) β π΄, π, (π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©)) β π) |
17 | 16 | adantr 482 | . . . 4 β’ ((π β§ π΄ β V) β if((Baseβπ) β π΄, π, (π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©)) β π) |
18 | 5, 17 | eqeltrd 2834 | . . 3 β’ ((π β§ π΄ β V) β (π βΎs π΄) β π) |
19 | 18 | ex 414 | . 2 β’ (π β (π΄ β V β (π βΎs π΄) β π)) |
20 | 6 | wun0 10713 | . . 3 β’ (π β β β π) |
21 | reldmress 17175 | . . . . 5 β’ Rel dom βΎs | |
22 | 21 | ovprc2 7449 | . . . 4 β’ (Β¬ π΄ β V β (π βΎs π΄) = β ) |
23 | 22 | eleq1d 2819 | . . 3 β’ (Β¬ π΄ β V β ((π βΎs π΄) β π β β β π)) |
24 | 20, 23 | syl5ibrcom 246 | . 2 β’ (π β (Β¬ π΄ β V β (π βΎs π΄) β π)) |
25 | 19, 24 | pm2.61d 179 | 1 β’ (π β (π βΎs π΄) β π) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 Vcvv 3475 β© cin 3948 β wss 3949 β c0 4323 ifcif 4529 β¨cop 4635 βcfv 6544 (class class class)co 7409 Οcom 7855 WUnicwun 10695 sSet csts 17096 ndxcnx 17126 Basecbs 17144 βΎs cress 17173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-inf2 9636 ax-cnex 11166 ax-1cn 11168 ax-addcl 11170 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-oadd 8470 df-omul 8471 df-er 8703 df-ec 8705 df-qs 8709 df-map 8822 df-pm 8823 df-wun 10697 df-ni 10867 df-pli 10868 df-mi 10869 df-lti 10870 df-plpq 10903 df-mpq 10904 df-ltpq 10905 df-enq 10906 df-nq 10907 df-erq 10908 df-plq 10909 df-mq 10910 df-1nq 10911 df-rq 10912 df-ltnq 10913 df-np 10976 df-plp 10978 df-ltp 10980 df-enr 11050 df-nr 11051 df-c 11116 df-nn 12213 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |