MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunss Structured version   Visualization version   GIF version

Theorem wunss 10707
Description: A weak universe is closed under subsets. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wununi.1 (𝜑𝑈 ∈ WUni)
wununi.2 (𝜑𝐴𝑈)
wunss.3 (𝜑𝐵𝐴)
Assertion
Ref Expression
wunss (𝜑𝐵𝑈)

Proof of Theorem wunss
StepHypRef Expression
1 wununi.1 . . 3 (𝜑𝑈 ∈ WUni)
2 wununi.2 . . . 4 (𝜑𝐴𝑈)
31, 2wunpw 10702 . . 3 (𝜑 → 𝒫 𝐴𝑈)
41, 3wunelss 10703 . 2 (𝜑 → 𝒫 𝐴𝑈)
5 wunss.3 . . 3 (𝜑𝐵𝐴)
62, 5sselpwd 5327 . 2 (𝜑𝐵 ∈ 𝒫 𝐴)
74, 6sseldd 3984 1 (𝜑𝐵𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  wss 3949  𝒫 cpw 4603  WUnicwun 10695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300
This theorem depends on definitions:  df-bi 206  df-an 398  df-3an 1090  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-in 3956  df-ss 3966  df-pw 4605  df-uni 4910  df-tr 5267  df-wun 10697
This theorem is referenced by:  wunin  10708  wundif  10709  wunint  10710  wun0  10713  wunom  10715  wunxp  10719  wunpm  10720  wunmap  10721  wundm  10723  wunrn  10724  wuncnv  10725  wunres  10726  wunfv  10727  wunco  10728  wuntpos  10729  wuncn  11165  wunstr  17121  wunndx  17128  wunfunc  17849  wunfuncOLD  17850
  Copyright terms: Public domain W3C validator