MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunss Structured version   Visualization version   GIF version

Theorem wunss 10672
Description: A weak universe is closed under subsets. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wununi.1 (𝜑𝑈 ∈ WUni)
wununi.2 (𝜑𝐴𝑈)
wunss.3 (𝜑𝐵𝐴)
Assertion
Ref Expression
wunss (𝜑𝐵𝑈)

Proof of Theorem wunss
StepHypRef Expression
1 wununi.1 . . 3 (𝜑𝑈 ∈ WUni)
2 wununi.2 . . . 4 (𝜑𝐴𝑈)
31, 2wunpw 10667 . . 3 (𝜑 → 𝒫 𝐴𝑈)
41, 3wunelss 10668 . 2 (𝜑 → 𝒫 𝐴𝑈)
5 wunss.3 . . 3 (𝜑𝐵𝐴)
62, 5sselpwd 5286 . 2 (𝜑𝐵 ∈ 𝒫 𝐴)
74, 6sseldd 3950 1 (𝜑𝐵𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wss 3917  𝒫 cpw 4566  WUnicwun 10660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-in 3924  df-ss 3934  df-pw 4568  df-uni 4875  df-tr 5218  df-wun 10662
This theorem is referenced by:  wunin  10673  wundif  10674  wunint  10675  wun0  10678  wunom  10680  wunxp  10684  wunpm  10685  wunmap  10686  wundm  10688  wunrn  10689  wuncnv  10690  wunres  10691  wunfv  10692  wunco  10693  wuntpos  10694  wuncn  11130  wunstr  17165  wunndx  17172  wunfunc  17870
  Copyright terms: Public domain W3C validator