![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wunss | Structured version Visualization version GIF version |
Description: A weak universe is closed under subsets. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wununi.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wununi.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
wunss.3 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
Ref | Expression |
---|---|
wunss | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wununi.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
2 | wununi.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
3 | 1, 2 | wunpw 10776 | . . 3 ⊢ (𝜑 → 𝒫 𝐴 ∈ 𝑈) |
4 | 1, 3 | wunelss 10777 | . 2 ⊢ (𝜑 → 𝒫 𝐴 ⊆ 𝑈) |
5 | wunss.3 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
6 | 2, 5 | sselpwd 5346 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝒫 𝐴) |
7 | 4, 6 | sseldd 4009 | 1 ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3976 𝒫 cpw 4622 WUnicwun 10769 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-in 3983 df-ss 3993 df-pw 4624 df-uni 4932 df-tr 5284 df-wun 10771 |
This theorem is referenced by: wunin 10782 wundif 10783 wunint 10784 wun0 10787 wunom 10789 wunxp 10793 wunpm 10794 wunmap 10795 wundm 10797 wunrn 10798 wuncnv 10799 wunres 10800 wunfv 10801 wunco 10802 wuntpos 10803 wuncn 11239 wunstr 17235 wunndx 17242 wunfunc 17965 wunfuncOLD 17966 |
Copyright terms: Public domain | W3C validator |