| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wunss | Structured version Visualization version GIF version | ||
| Description: A weak universe is closed under subsets. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| wununi.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| wununi.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| wunss.3 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| wunss | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wununi.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 2 | wununi.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 3 | 1, 2 | wunpw 10660 | . . 3 ⊢ (𝜑 → 𝒫 𝐴 ∈ 𝑈) |
| 4 | 1, 3 | wunelss 10661 | . 2 ⊢ (𝜑 → 𝒫 𝐴 ⊆ 𝑈) |
| 5 | wunss.3 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 6 | 2, 5 | sselpwd 5283 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝒫 𝐴) |
| 7 | 4, 6 | sseldd 3947 | 1 ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3914 𝒫 cpw 4563 WUnicwun 10653 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-in 3921 df-ss 3931 df-pw 4565 df-uni 4872 df-tr 5215 df-wun 10655 |
| This theorem is referenced by: wunin 10666 wundif 10667 wunint 10668 wun0 10671 wunom 10673 wunxp 10677 wunpm 10678 wunmap 10679 wundm 10681 wunrn 10682 wuncnv 10683 wunres 10684 wunfv 10685 wunco 10686 wuntpos 10687 wuncn 11123 wunstr 17158 wunndx 17165 wunfunc 17863 |
| Copyright terms: Public domain | W3C validator |