MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunss Structured version   Visualization version   GIF version

Theorem wunss 10606
Description: A weak universe is closed under subsets. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wununi.1 (𝜑𝑈 ∈ WUni)
wununi.2 (𝜑𝐴𝑈)
wunss.3 (𝜑𝐵𝐴)
Assertion
Ref Expression
wunss (𝜑𝐵𝑈)

Proof of Theorem wunss
StepHypRef Expression
1 wununi.1 . . 3 (𝜑𝑈 ∈ WUni)
2 wununi.2 . . . 4 (𝜑𝐴𝑈)
31, 2wunpw 10601 . . 3 (𝜑 → 𝒫 𝐴𝑈)
41, 3wunelss 10602 . 2 (𝜑 → 𝒫 𝐴𝑈)
5 wunss.3 . . 3 (𝜑𝐵𝐴)
62, 5sselpwd 5267 . 2 (𝜑𝐵 ∈ 𝒫 𝐴)
74, 6sseldd 3936 1 (𝜑𝐵𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wss 3903  𝒫 cpw 4551  WUnicwun 10594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-in 3910  df-ss 3920  df-pw 4553  df-uni 4859  df-tr 5200  df-wun 10596
This theorem is referenced by:  wunin  10607  wundif  10608  wunint  10609  wun0  10612  wunom  10614  wunxp  10618  wunpm  10619  wunmap  10620  wundm  10622  wunrn  10623  wuncnv  10624  wunres  10625  wunfv  10626  wunco  10627  wuntpos  10628  wuncn  11064  wunstr  17099  wunndx  17106  wunfunc  17808
  Copyright terms: Public domain W3C validator