MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunss Structured version   Visualization version   GIF version

Theorem wunss 10727
Description: A weak universe is closed under subsets. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wununi.1 (𝜑𝑈 ∈ WUni)
wununi.2 (𝜑𝐴𝑈)
wunss.3 (𝜑𝐵𝐴)
Assertion
Ref Expression
wunss (𝜑𝐵𝑈)

Proof of Theorem wunss
StepHypRef Expression
1 wununi.1 . . 3 (𝜑𝑈 ∈ WUni)
2 wununi.2 . . . 4 (𝜑𝐴𝑈)
31, 2wunpw 10722 . . 3 (𝜑 → 𝒫 𝐴𝑈)
41, 3wunelss 10723 . 2 (𝜑 → 𝒫 𝐴𝑈)
5 wunss.3 . . 3 (𝜑𝐵𝐴)
62, 5sselpwd 5322 . 2 (𝜑𝐵 ∈ 𝒫 𝐴)
74, 6sseldd 3979 1 (𝜑𝐵𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2099  wss 3944  𝒫 cpw 4598  WUnicwun 10715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698  ax-sep 5293
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-in 3951  df-ss 3961  df-pw 4600  df-uni 4904  df-tr 5260  df-wun 10717
This theorem is referenced by:  wunin  10728  wundif  10729  wunint  10730  wun0  10733  wunom  10735  wunxp  10739  wunpm  10740  wunmap  10741  wundm  10743  wunrn  10744  wuncnv  10745  wunres  10746  wunfv  10747  wunco  10748  wuntpos  10749  wuncn  11185  wunstr  17148  wunndx  17155  wunfunc  17878  wunfuncOLD  17879
  Copyright terms: Public domain W3C validator