MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunss Structured version   Visualization version   GIF version

Theorem wunss 10726
Description: A weak universe is closed under subsets. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wununi.1 (𝜑𝑈 ∈ WUni)
wununi.2 (𝜑𝐴𝑈)
wunss.3 (𝜑𝐵𝐴)
Assertion
Ref Expression
wunss (𝜑𝐵𝑈)

Proof of Theorem wunss
StepHypRef Expression
1 wununi.1 . . 3 (𝜑𝑈 ∈ WUni)
2 wununi.2 . . . 4 (𝜑𝐴𝑈)
31, 2wunpw 10721 . . 3 (𝜑 → 𝒫 𝐴𝑈)
41, 3wunelss 10722 . 2 (𝜑 → 𝒫 𝐴𝑈)
5 wunss.3 . . 3 (𝜑𝐵𝐴)
62, 5sselpwd 5298 . 2 (𝜑𝐵 ∈ 𝒫 𝐴)
74, 6sseldd 3959 1 (𝜑𝐵𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wss 3926  𝒫 cpw 4575  WUnicwun 10714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-in 3933  df-ss 3943  df-pw 4577  df-uni 4884  df-tr 5230  df-wun 10716
This theorem is referenced by:  wunin  10727  wundif  10728  wunint  10729  wun0  10732  wunom  10734  wunxp  10738  wunpm  10739  wunmap  10740  wundm  10742  wunrn  10743  wuncnv  10744  wunres  10745  wunfv  10746  wunco  10747  wuntpos  10748  wuncn  11184  wunstr  17207  wunndx  17214  wunfunc  17914
  Copyright terms: Public domain W3C validator