MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunss Structured version   Visualization version   GIF version

Theorem wunss 10781
Description: A weak universe is closed under subsets. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wununi.1 (𝜑𝑈 ∈ WUni)
wununi.2 (𝜑𝐴𝑈)
wunss.3 (𝜑𝐵𝐴)
Assertion
Ref Expression
wunss (𝜑𝐵𝑈)

Proof of Theorem wunss
StepHypRef Expression
1 wununi.1 . . 3 (𝜑𝑈 ∈ WUni)
2 wununi.2 . . . 4 (𝜑𝐴𝑈)
31, 2wunpw 10776 . . 3 (𝜑 → 𝒫 𝐴𝑈)
41, 3wunelss 10777 . 2 (𝜑 → 𝒫 𝐴𝑈)
5 wunss.3 . . 3 (𝜑𝐵𝐴)
62, 5sselpwd 5346 . 2 (𝜑𝐵 ∈ 𝒫 𝐴)
74, 6sseldd 4009 1 (𝜑𝐵𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wss 3976  𝒫 cpw 4622  WUnicwun 10769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-in 3983  df-ss 3993  df-pw 4624  df-uni 4932  df-tr 5284  df-wun 10771
This theorem is referenced by:  wunin  10782  wundif  10783  wunint  10784  wun0  10787  wunom  10789  wunxp  10793  wunpm  10794  wunmap  10795  wundm  10797  wunrn  10798  wuncnv  10799  wunres  10800  wunfv  10801  wunco  10802  wuntpos  10803  wuncn  11239  wunstr  17235  wunndx  17242  wunfunc  17965  wunfuncOLD  17966
  Copyright terms: Public domain W3C validator