![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wunss | Structured version Visualization version GIF version |
Description: A weak universe is closed under subsets. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wununi.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wununi.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
wunss.3 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
Ref | Expression |
---|---|
wunss | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wununi.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
2 | wununi.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
3 | 1, 2 | wunpw 10722 | . . 3 ⊢ (𝜑 → 𝒫 𝐴 ∈ 𝑈) |
4 | 1, 3 | wunelss 10723 | . 2 ⊢ (𝜑 → 𝒫 𝐴 ⊆ 𝑈) |
5 | wunss.3 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
6 | 2, 5 | sselpwd 5322 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝒫 𝐴) |
7 | 4, 6 | sseldd 3979 | 1 ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 ⊆ wss 3944 𝒫 cpw 4598 WUnicwun 10715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 ax-sep 5293 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-in 3951 df-ss 3961 df-pw 4600 df-uni 4904 df-tr 5260 df-wun 10717 |
This theorem is referenced by: wunin 10728 wundif 10729 wunint 10730 wun0 10733 wunom 10735 wunxp 10739 wunpm 10740 wunmap 10741 wundm 10743 wunrn 10744 wuncnv 10745 wunres 10746 wunfv 10747 wunco 10748 wuntpos 10749 wuncn 11185 wunstr 17148 wunndx 17155 wunfunc 17878 wunfuncOLD 17879 |
Copyright terms: Public domain | W3C validator |