MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunss Structured version   Visualization version   GIF version

Theorem wunss 10641
Description: A weak universe is closed under subsets. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wununi.1 (𝜑𝑈 ∈ WUni)
wununi.2 (𝜑𝐴𝑈)
wunss.3 (𝜑𝐵𝐴)
Assertion
Ref Expression
wunss (𝜑𝐵𝑈)

Proof of Theorem wunss
StepHypRef Expression
1 wununi.1 . . 3 (𝜑𝑈 ∈ WUni)
2 wununi.2 . . . 4 (𝜑𝐴𝑈)
31, 2wunpw 10636 . . 3 (𝜑 → 𝒫 𝐴𝑈)
41, 3wunelss 10637 . 2 (𝜑 → 𝒫 𝐴𝑈)
5 wunss.3 . . 3 (𝜑𝐵𝐴)
62, 5sselpwd 5278 . 2 (𝜑𝐵 ∈ 𝒫 𝐴)
74, 6sseldd 3944 1 (𝜑𝐵𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wss 3911  𝒫 cpw 4559  WUnicwun 10629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-in 3918  df-ss 3928  df-pw 4561  df-uni 4868  df-tr 5210  df-wun 10631
This theorem is referenced by:  wunin  10642  wundif  10643  wunint  10644  wun0  10647  wunom  10649  wunxp  10653  wunpm  10654  wunmap  10655  wundm  10657  wunrn  10658  wuncnv  10659  wunres  10660  wunfv  10661  wunco  10662  wuntpos  10663  wuncn  11099  wunstr  17134  wunndx  17141  wunfunc  17839
  Copyright terms: Public domain W3C validator