| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wunss | Structured version Visualization version GIF version | ||
| Description: A weak universe is closed under subsets. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| wununi.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| wununi.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| wunss.3 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| wunss | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wununi.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 2 | wununi.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 3 | 1, 2 | wunpw 10667 | . . 3 ⊢ (𝜑 → 𝒫 𝐴 ∈ 𝑈) |
| 4 | 1, 3 | wunelss 10668 | . 2 ⊢ (𝜑 → 𝒫 𝐴 ⊆ 𝑈) |
| 5 | wunss.3 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 6 | 2, 5 | sselpwd 5286 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝒫 𝐴) |
| 7 | 4, 6 | sseldd 3950 | 1 ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3917 𝒫 cpw 4566 WUnicwun 10660 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-in 3924 df-ss 3934 df-pw 4568 df-uni 4875 df-tr 5218 df-wun 10662 |
| This theorem is referenced by: wunin 10673 wundif 10674 wunint 10675 wun0 10678 wunom 10680 wunxp 10684 wunpm 10685 wunmap 10686 wundm 10688 wunrn 10689 wuncnv 10690 wunres 10691 wunfv 10692 wunco 10693 wuntpos 10694 wuncn 11130 wunstr 17165 wunndx 17172 wunfunc 17870 |
| Copyright terms: Public domain | W3C validator |