MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunss Structured version   Visualization version   GIF version

Theorem wunss 10665
Description: A weak universe is closed under subsets. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wununi.1 (𝜑𝑈 ∈ WUni)
wununi.2 (𝜑𝐴𝑈)
wunss.3 (𝜑𝐵𝐴)
Assertion
Ref Expression
wunss (𝜑𝐵𝑈)

Proof of Theorem wunss
StepHypRef Expression
1 wununi.1 . . 3 (𝜑𝑈 ∈ WUni)
2 wununi.2 . . . 4 (𝜑𝐴𝑈)
31, 2wunpw 10660 . . 3 (𝜑 → 𝒫 𝐴𝑈)
41, 3wunelss 10661 . 2 (𝜑 → 𝒫 𝐴𝑈)
5 wunss.3 . . 3 (𝜑𝐵𝐴)
62, 5sselpwd 5283 . 2 (𝜑𝐵 ∈ 𝒫 𝐴)
74, 6sseldd 3947 1 (𝜑𝐵𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wss 3914  𝒫 cpw 4563  WUnicwun 10653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-in 3921  df-ss 3931  df-pw 4565  df-uni 4872  df-tr 5215  df-wun 10655
This theorem is referenced by:  wunin  10666  wundif  10667  wunint  10668  wun0  10671  wunom  10673  wunxp  10677  wunpm  10678  wunmap  10679  wundm  10681  wunrn  10682  wuncnv  10683  wunres  10684  wunfv  10685  wunco  10686  wuntpos  10687  wuncn  11123  wunstr  17158  wunndx  17165  wunfunc  17863
  Copyright terms: Public domain W3C validator