| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wunss | Structured version Visualization version GIF version | ||
| Description: A weak universe is closed under subsets. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| wununi.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| wununi.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| wunss.3 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| wunss | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wununi.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 2 | wununi.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 3 | 1, 2 | wunpw 10713 | . . 3 ⊢ (𝜑 → 𝒫 𝐴 ∈ 𝑈) |
| 4 | 1, 3 | wunelss 10714 | . 2 ⊢ (𝜑 → 𝒫 𝐴 ⊆ 𝑈) |
| 5 | wunss.3 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 6 | 2, 5 | sselpwd 5295 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝒫 𝐴) |
| 7 | 4, 6 | sseldd 3957 | 1 ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 ⊆ wss 3924 𝒫 cpw 4573 WUnicwun 10706 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5263 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-in 3931 df-ss 3941 df-pw 4575 df-uni 4881 df-tr 5227 df-wun 10708 |
| This theorem is referenced by: wunin 10719 wundif 10720 wunint 10721 wun0 10724 wunom 10726 wunxp 10730 wunpm 10731 wunmap 10732 wundm 10734 wunrn 10735 wuncnv 10736 wunres 10737 wunfv 10738 wunco 10739 wuntpos 10740 wuncn 11176 wunstr 17192 wunndx 17199 wunfunc 17899 |
| Copyright terms: Public domain | W3C validator |