MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunss Structured version   Visualization version   GIF version

Theorem wunss 10468
Description: A weak universe is closed under subsets. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wununi.1 (𝜑𝑈 ∈ WUni)
wununi.2 (𝜑𝐴𝑈)
wunss.3 (𝜑𝐵𝐴)
Assertion
Ref Expression
wunss (𝜑𝐵𝑈)

Proof of Theorem wunss
StepHypRef Expression
1 wununi.1 . . 3 (𝜑𝑈 ∈ WUni)
2 wununi.2 . . . 4 (𝜑𝐴𝑈)
31, 2wunpw 10463 . . 3 (𝜑 → 𝒫 𝐴𝑈)
41, 3wunelss 10464 . 2 (𝜑 → 𝒫 𝐴𝑈)
5 wunss.3 . . 3 (𝜑𝐵𝐴)
62, 5sselpwd 5250 . 2 (𝜑𝐵 ∈ 𝒫 𝐴)
74, 6sseldd 3922 1 (𝜑𝐵𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wss 3887  𝒫 cpw 4533  WUnicwun 10456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709  ax-sep 5223
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rab 3073  df-v 3434  df-in 3894  df-ss 3904  df-pw 4535  df-uni 4840  df-tr 5192  df-wun 10458
This theorem is referenced by:  wunin  10469  wundif  10470  wunint  10471  wun0  10474  wunom  10476  wunxp  10480  wunpm  10481  wunmap  10482  wundm  10484  wunrn  10485  wuncnv  10486  wunres  10487  wunfv  10488  wunco  10489  wuntpos  10490  wuncn  10926  wunstr  16889  wunndx  16896  wunfunc  17614  wunfuncOLD  17615
  Copyright terms: Public domain W3C validator