| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wunss | Structured version Visualization version GIF version | ||
| Description: A weak universe is closed under subsets. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| wununi.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| wununi.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| wunss.3 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| wunss | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wununi.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 2 | wununi.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 3 | 1, 2 | wunpw 10721 | . . 3 ⊢ (𝜑 → 𝒫 𝐴 ∈ 𝑈) |
| 4 | 1, 3 | wunelss 10722 | . 2 ⊢ (𝜑 → 𝒫 𝐴 ⊆ 𝑈) |
| 5 | wunss.3 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 6 | 2, 5 | sselpwd 5298 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝒫 𝐴) |
| 7 | 4, 6 | sseldd 3959 | 1 ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3926 𝒫 cpw 4575 WUnicwun 10714 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-in 3933 df-ss 3943 df-pw 4577 df-uni 4884 df-tr 5230 df-wun 10716 |
| This theorem is referenced by: wunin 10727 wundif 10728 wunint 10729 wun0 10732 wunom 10734 wunxp 10738 wunpm 10739 wunmap 10740 wundm 10742 wunrn 10743 wuncnv 10744 wunres 10745 wunfv 10746 wunco 10747 wuntpos 10748 wuncn 11184 wunstr 17207 wunndx 17214 wunfunc 17914 |
| Copyright terms: Public domain | W3C validator |