MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunss Structured version   Visualization version   GIF version

Theorem wunss 10399
Description: A weak universe is closed under subsets. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wununi.1 (𝜑𝑈 ∈ WUni)
wununi.2 (𝜑𝐴𝑈)
wunss.3 (𝜑𝐵𝐴)
Assertion
Ref Expression
wunss (𝜑𝐵𝑈)

Proof of Theorem wunss
StepHypRef Expression
1 wununi.1 . . 3 (𝜑𝑈 ∈ WUni)
2 wununi.2 . . . 4 (𝜑𝐴𝑈)
31, 2wunpw 10394 . . 3 (𝜑 → 𝒫 𝐴𝑈)
41, 3wunelss 10395 . 2 (𝜑 → 𝒫 𝐴𝑈)
5 wunss.3 . . 3 (𝜑𝐵𝐴)
62, 5sselpwd 5245 . 2 (𝜑𝐵 ∈ 𝒫 𝐴)
74, 6sseldd 3918 1 (𝜑𝐵𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wss 3883  𝒫 cpw 4530  WUnicwun 10387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-ext 2709  ax-sep 5218
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rab 3072  df-v 3424  df-in 3890  df-ss 3900  df-pw 4532  df-uni 4837  df-tr 5188  df-wun 10389
This theorem is referenced by:  wunin  10400  wundif  10401  wunint  10402  wun0  10405  wunom  10407  wunxp  10411  wunpm  10412  wunmap  10413  wundm  10415  wunrn  10416  wuncnv  10417  wunres  10418  wunfv  10419  wunco  10420  wuntpos  10421  wuncn  10857  wunstr  16817  wunndx  16824  wunfunc  17530  wunfuncOLD  17531
  Copyright terms: Public domain W3C validator