MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunss Structured version   Visualization version   GIF version

Theorem wunss 10718
Description: A weak universe is closed under subsets. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wununi.1 (𝜑𝑈 ∈ WUni)
wununi.2 (𝜑𝐴𝑈)
wunss.3 (𝜑𝐵𝐴)
Assertion
Ref Expression
wunss (𝜑𝐵𝑈)

Proof of Theorem wunss
StepHypRef Expression
1 wununi.1 . . 3 (𝜑𝑈 ∈ WUni)
2 wununi.2 . . . 4 (𝜑𝐴𝑈)
31, 2wunpw 10713 . . 3 (𝜑 → 𝒫 𝐴𝑈)
41, 3wunelss 10714 . 2 (𝜑 → 𝒫 𝐴𝑈)
5 wunss.3 . . 3 (𝜑𝐵𝐴)
62, 5sselpwd 5295 . 2 (𝜑𝐵 ∈ 𝒫 𝐴)
74, 6sseldd 3957 1 (𝜑𝐵𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  wss 3924  𝒫 cpw 4573  WUnicwun 10706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5263
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-in 3931  df-ss 3941  df-pw 4575  df-uni 4881  df-tr 5227  df-wun 10708
This theorem is referenced by:  wunin  10719  wundif  10720  wunint  10721  wun0  10724  wunom  10726  wunxp  10730  wunpm  10731  wunmap  10732  wundm  10734  wunrn  10735  wuncnv  10736  wunres  10737  wunfv  10738  wunco  10739  wuntpos  10740  wuncn  11176  wunstr  17192  wunndx  17199  wunfunc  17899
  Copyright terms: Public domain W3C validator