MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunss Structured version   Visualization version   GIF version

Theorem wunss 10603
Description: A weak universe is closed under subsets. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wununi.1 (𝜑𝑈 ∈ WUni)
wununi.2 (𝜑𝐴𝑈)
wunss.3 (𝜑𝐵𝐴)
Assertion
Ref Expression
wunss (𝜑𝐵𝑈)

Proof of Theorem wunss
StepHypRef Expression
1 wununi.1 . . 3 (𝜑𝑈 ∈ WUni)
2 wununi.2 . . . 4 (𝜑𝐴𝑈)
31, 2wunpw 10598 . . 3 (𝜑 → 𝒫 𝐴𝑈)
41, 3wunelss 10599 . 2 (𝜑 → 𝒫 𝐴𝑈)
5 wunss.3 . . 3 (𝜑𝐵𝐴)
62, 5sselpwd 5264 . 2 (𝜑𝐵 ∈ 𝒫 𝐴)
74, 6sseldd 3930 1 (𝜑𝐵𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  wss 3897  𝒫 cpw 4547  WUnicwun 10591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-in 3904  df-ss 3914  df-pw 4549  df-uni 4857  df-tr 5197  df-wun 10593
This theorem is referenced by:  wunin  10604  wundif  10605  wunint  10606  wun0  10609  wunom  10611  wunxp  10615  wunpm  10616  wunmap  10617  wundm  10619  wunrn  10620  wuncnv  10621  wunres  10622  wunfv  10623  wunco  10624  wuntpos  10625  wuncn  11061  wunstr  17099  wunndx  17106  wunfunc  17808
  Copyright terms: Public domain W3C validator