Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wunss | Structured version Visualization version GIF version |
Description: A weak universe is closed under subsets. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wununi.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wununi.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
wunss.3 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
Ref | Expression |
---|---|
wunss | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wununi.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
2 | wununi.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
3 | 1, 2 | wunpw 10394 | . . 3 ⊢ (𝜑 → 𝒫 𝐴 ∈ 𝑈) |
4 | 1, 3 | wunelss 10395 | . 2 ⊢ (𝜑 → 𝒫 𝐴 ⊆ 𝑈) |
5 | wunss.3 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
6 | 2, 5 | sselpwd 5245 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝒫 𝐴) |
7 | 4, 6 | sseldd 3918 | 1 ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3883 𝒫 cpw 4530 WUnicwun 10387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-pw 4532 df-uni 4837 df-tr 5188 df-wun 10389 |
This theorem is referenced by: wunin 10400 wundif 10401 wunint 10402 wun0 10405 wunom 10407 wunxp 10411 wunpm 10412 wunmap 10413 wundm 10415 wunrn 10416 wuncnv 10417 wunres 10418 wunfv 10419 wunco 10420 wuntpos 10421 wuncn 10857 wunstr 16817 wunndx 16824 wunfunc 17530 wunfuncOLD 17531 |
Copyright terms: Public domain | W3C validator |