MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wundif Structured version   Visualization version   GIF version

Theorem wundif 10752
Description: A weak universe is closed under class difference. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wununi.1 (𝜑𝑈 ∈ WUni)
wununi.2 (𝜑𝐴𝑈)
Assertion
Ref Expression
wundif (𝜑 → (𝐴𝐵) ∈ 𝑈)

Proof of Theorem wundif
StepHypRef Expression
1 wununi.1 . 2 (𝜑𝑈 ∈ WUni)
2 wununi.2 . 2 (𝜑𝐴𝑈)
3 difssd 4147 . 2 (𝜑 → (𝐴𝐵) ⊆ 𝐴)
41, 2, 3wunss 10750 1 (𝜑 → (𝐴𝐵) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  cdif 3960  WUnicwun 10738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-in 3970  df-ss 3980  df-pw 4607  df-uni 4913  df-tr 5266  df-wun 10740
This theorem is referenced by:  wuncn  11208
  Copyright terms: Public domain W3C validator