![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wundif | Structured version Visualization version GIF version |
Description: A weak universe is closed under class difference. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wununi.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wununi.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
Ref | Expression |
---|---|
wundif | ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wununi.1 | . 2 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
2 | wununi.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
3 | difssd 4133 | . 2 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ⊆ 𝐴) | |
4 | 1, 2, 3 | wunss 10707 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 ∖ cdif 3946 WUnicwun 10695 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-in 3956 df-ss 3966 df-pw 4605 df-uni 4910 df-tr 5267 df-wun 10697 |
This theorem is referenced by: wuncn 11165 |
Copyright terms: Public domain | W3C validator |