MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wundif Structured version   Visualization version   GIF version

Theorem wundif 10667
Description: A weak universe is closed under class difference. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wununi.1 (𝜑𝑈 ∈ WUni)
wununi.2 (𝜑𝐴𝑈)
Assertion
Ref Expression
wundif (𝜑 → (𝐴𝐵) ∈ 𝑈)

Proof of Theorem wundif
StepHypRef Expression
1 wununi.1 . 2 (𝜑𝑈 ∈ WUni)
2 wununi.2 . 2 (𝜑𝐴𝑈)
3 difssd 4100 . 2 (𝜑 → (𝐴𝐵) ⊆ 𝐴)
41, 2, 3wunss 10665 1 (𝜑 → (𝐴𝐵) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cdif 3911  WUnicwun 10653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-in 3921  df-ss 3931  df-pw 4565  df-uni 4872  df-tr 5215  df-wun 10655
This theorem is referenced by:  wuncn  11123
  Copyright terms: Public domain W3C validator