![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wundif | Structured version Visualization version GIF version |
Description: A weak universe is closed under class difference. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wununi.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wununi.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
Ref | Expression |
---|---|
wundif | ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wununi.1 | . 2 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
2 | wununi.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
3 | difssd 4160 | . 2 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ⊆ 𝐴) | |
4 | 1, 2, 3 | wunss 10781 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∖ cdif 3973 WUnicwun 10769 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-in 3983 df-ss 3993 df-pw 4624 df-uni 4932 df-tr 5284 df-wun 10771 |
This theorem is referenced by: wuncn 11239 |
Copyright terms: Public domain | W3C validator |