Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wundif | Structured version Visualization version GIF version |
Description: A weak universe is closed under class difference. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wununi.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wununi.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
Ref | Expression |
---|---|
wundif | ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wununi.1 | . 2 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
2 | wununi.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
3 | difssd 4063 | . 2 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ⊆ 𝐴) | |
4 | 1, 2, 3 | wunss 10399 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∖ cdif 3880 WUnicwun 10387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-pw 4532 df-uni 4837 df-tr 5188 df-wun 10389 |
This theorem is referenced by: wuncn 10857 |
Copyright terms: Public domain | W3C validator |