![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wundif | Structured version Visualization version GIF version |
Description: A weak universe is closed under class difference. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wununi.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wununi.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
Ref | Expression |
---|---|
wundif | ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wununi.1 | . 2 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
2 | wununi.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
3 | difssd 4129 | . 2 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ⊆ 𝐴) | |
4 | 1, 2, 3 | wunss 10737 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 ∖ cdif 3941 WUnicwun 10725 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5300 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1086 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-in 3951 df-ss 3961 df-pw 4606 df-uni 4910 df-tr 5267 df-wun 10727 |
This theorem is referenced by: wuncn 11195 |
Copyright terms: Public domain | W3C validator |