MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wundif Structured version   Visualization version   GIF version

Theorem wundif 10709
Description: A weak universe is closed under class difference. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wununi.1 (𝜑𝑈 ∈ WUni)
wununi.2 (𝜑𝐴𝑈)
Assertion
Ref Expression
wundif (𝜑 → (𝐴𝐵) ∈ 𝑈)

Proof of Theorem wundif
StepHypRef Expression
1 wununi.1 . 2 (𝜑𝑈 ∈ WUni)
2 wununi.2 . 2 (𝜑𝐴𝑈)
3 difssd 4133 . 2 (𝜑 → (𝐴𝐵) ⊆ 𝐴)
41, 2, 3wunss 10707 1 (𝜑 → (𝐴𝐵) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  cdif 3946  WUnicwun 10695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300
This theorem depends on definitions:  df-bi 206  df-an 398  df-3an 1090  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-in 3956  df-ss 3966  df-pw 4605  df-uni 4910  df-tr 5267  df-wun 10697
This theorem is referenced by:  wuncn  11165
  Copyright terms: Public domain W3C validator