| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wundif | Structured version Visualization version GIF version | ||
| Description: A weak universe is closed under class difference. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| wununi.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| wununi.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| wundif | ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wununi.1 | . 2 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 2 | wununi.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 3 | difssd 4100 | . 2 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ⊆ 𝐴) | |
| 4 | 1, 2, 3 | wunss 10665 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∖ cdif 3911 WUnicwun 10653 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-in 3921 df-ss 3931 df-pw 4565 df-uni 4872 df-tr 5215 df-wun 10655 |
| This theorem is referenced by: wuncn 11123 |
| Copyright terms: Public domain | W3C validator |