MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wundif Structured version   Visualization version   GIF version

Theorem wundif 10783
Description: A weak universe is closed under class difference. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wununi.1 (𝜑𝑈 ∈ WUni)
wununi.2 (𝜑𝐴𝑈)
Assertion
Ref Expression
wundif (𝜑 → (𝐴𝐵) ∈ 𝑈)

Proof of Theorem wundif
StepHypRef Expression
1 wununi.1 . 2 (𝜑𝑈 ∈ WUni)
2 wununi.2 . 2 (𝜑𝐴𝑈)
3 difssd 4160 . 2 (𝜑 → (𝐴𝐵) ⊆ 𝐴)
41, 2, 3wunss 10781 1 (𝜑 → (𝐴𝐵) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  cdif 3973  WUnicwun 10769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-in 3983  df-ss 3993  df-pw 4624  df-uni 4932  df-tr 5284  df-wun 10771
This theorem is referenced by:  wuncn  11239
  Copyright terms: Public domain W3C validator