| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wuntr | Structured version Visualization version GIF version | ||
| Description: A weak universe is transitive. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| wuntr | ⊢ (𝑈 ∈ WUni → Tr 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iswun 10587 | . . 3 ⊢ (𝑈 ∈ WUni → (𝑈 ∈ WUni ↔ (Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)))) | |
| 2 | 1 | ibi 267 | . 2 ⊢ (𝑈 ∈ WUni → (Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈))) |
| 3 | 2 | simp1d 1142 | 1 ⊢ (𝑈 ∈ WUni → Tr 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2110 ≠ wne 2926 ∀wral 3045 ∅c0 4281 𝒫 cpw 4548 {cpr 4576 ∪ cuni 4857 Tr wtr 5196 WUnicwun 10583 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-v 3436 df-ss 3917 df-uni 4858 df-tr 5197 df-wun 10585 |
| This theorem is referenced by: wunelss 10591 intwun 10618 |
| Copyright terms: Public domain | W3C validator |