MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wuntr Structured version   Visualization version   GIF version

Theorem wuntr 10588
Description: A weak universe is transitive. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
wuntr (𝑈 ∈ WUni → Tr 𝑈)

Proof of Theorem wuntr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iswun 10587 . . 3 (𝑈 ∈ WUni → (𝑈 ∈ WUni ↔ (Tr 𝑈𝑈 ≠ ∅ ∧ ∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈))))
21ibi 267 . 2 (𝑈 ∈ WUni → (Tr 𝑈𝑈 ≠ ∅ ∧ ∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈)))
32simp1d 1142 1 (𝑈 ∈ WUni → Tr 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2110  wne 2926  wral 3045  c0 4281  𝒫 cpw 4548  {cpr 4576   cuni 4857  Tr wtr 5196  WUnicwun 10583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1544  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-v 3436  df-ss 3917  df-uni 4858  df-tr 5197  df-wun 10585
This theorem is referenced by:  wunelss  10591  intwun  10618
  Copyright terms: Public domain W3C validator