![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wuntr | Structured version Visualization version GIF version |
Description: A weak universe is transitive. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wuntr | ⊢ (𝑈 ∈ WUni → Tr 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iswun 10773 | . . 3 ⊢ (𝑈 ∈ WUni → (𝑈 ∈ WUni ↔ (Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)))) | |
2 | 1 | ibi 267 | . 2 ⊢ (𝑈 ∈ WUni → (Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈))) |
3 | 2 | simp1d 1142 | 1 ⊢ (𝑈 ∈ WUni → Tr 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∅c0 4352 𝒫 cpw 4622 {cpr 4650 ∪ cuni 4931 Tr wtr 5283 WUnicwun 10769 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-v 3490 df-ss 3993 df-uni 4932 df-tr 5284 df-wun 10771 |
This theorem is referenced by: wunelss 10777 intwun 10804 |
Copyright terms: Public domain | W3C validator |