MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wuntr Structured version   Visualization version   GIF version

Theorem wuntr 10634
Description: A weak universe is transitive. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
wuntr (𝑈 ∈ WUni → Tr 𝑈)

Proof of Theorem wuntr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iswun 10633 . . 3 (𝑈 ∈ WUni → (𝑈 ∈ WUni ↔ (Tr 𝑈𝑈 ≠ ∅ ∧ ∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈))))
21ibi 267 . 2 (𝑈 ∈ WUni → (Tr 𝑈𝑈 ≠ ∅ ∧ ∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈)))
32simp1d 1142 1 (𝑈 ∈ WUni → Tr 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2109  wne 2925  wral 3044  c0 4292  𝒫 cpw 4559  {cpr 4587   cuni 4867  Tr wtr 5209  WUnicwun 10629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-v 3446  df-ss 3928  df-uni 4868  df-tr 5210  df-wun 10631
This theorem is referenced by:  wunelss  10637  intwun  10664
  Copyright terms: Public domain W3C validator