MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wuntr Structured version   Visualization version   GIF version

Theorem wuntr 10774
Description: A weak universe is transitive. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
wuntr (𝑈 ∈ WUni → Tr 𝑈)

Proof of Theorem wuntr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iswun 10773 . . 3 (𝑈 ∈ WUni → (𝑈 ∈ WUni ↔ (Tr 𝑈𝑈 ≠ ∅ ∧ ∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈))))
21ibi 267 . 2 (𝑈 ∈ WUni → (Tr 𝑈𝑈 ≠ ∅ ∧ ∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈)))
32simp1d 1142 1 (𝑈 ∈ WUni → Tr 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087  wcel 2108  wne 2946  wral 3067  c0 4352  𝒫 cpw 4622  {cpr 4650   cuni 4931  Tr wtr 5283  WUnicwun 10769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-v 3490  df-ss 3993  df-uni 4932  df-tr 5284  df-wun 10771
This theorem is referenced by:  wunelss  10777  intwun  10804
  Copyright terms: Public domain W3C validator