![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wununi | Structured version Visualization version GIF version |
Description: A weak universe is closed under union. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wununi.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wununi.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
Ref | Expression |
---|---|
wununi | ⊢ (𝜑 → ∪ 𝐴 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 4919 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
2 | 1 | eleq1d 2818 | . 2 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 ∈ 𝑈 ↔ ∪ 𝐴 ∈ 𝑈)) |
3 | wununi.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
4 | iswun 10701 | . . . . 5 ⊢ (𝑈 ∈ WUni → (𝑈 ∈ WUni ↔ (Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)))) | |
5 | 4 | ibi 266 | . . . 4 ⊢ (𝑈 ∈ WUni → (Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈))) |
6 | 5 | simp3d 1144 | . . 3 ⊢ (𝑈 ∈ WUni → ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)) |
7 | simp1 1136 | . . . 4 ⊢ ((∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈) → ∪ 𝑥 ∈ 𝑈) | |
8 | 7 | ralimi 3083 | . . 3 ⊢ (∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈) → ∀𝑥 ∈ 𝑈 ∪ 𝑥 ∈ 𝑈) |
9 | 3, 6, 8 | 3syl 18 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑈 ∪ 𝑥 ∈ 𝑈) |
10 | wununi.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
11 | 2, 9, 10 | rspcdva 3613 | 1 ⊢ (𝜑 → ∪ 𝐴 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ∀wral 3061 ∅c0 4322 𝒫 cpw 4602 {cpr 4630 ∪ cuni 4908 Tr wtr 5265 WUnicwun 10697 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1089 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-v 3476 df-in 3955 df-ss 3965 df-uni 4909 df-tr 5266 df-wun 10699 |
This theorem is referenced by: wunun 10707 wunint 10712 wundm 10725 wunrn 10726 wunfv 10729 intwun 10732 wuncval2 10744 wunstr 17125 wunfunc 17853 wunfuncOLD 17854 wunnat 17911 wunnatOLD 17912 catcoppccl 18071 catcoppcclOLD 18072 catcfuccl 18073 catcfucclOLD 18074 catcxpccl 18163 catcxpcclOLD 18164 |
Copyright terms: Public domain | W3C validator |