MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intwun Structured version   Visualization version   GIF version

Theorem intwun 9849
Description: The intersection of a collection of weak universes is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
intwun ((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) → 𝐴 ∈ WUni)

Proof of Theorem intwun
Dummy variables 𝑥 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 470 . . . . . 6 ((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ WUni)
21sselda 3809 . . . . 5 (((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) ∧ 𝑢𝐴) → 𝑢 ∈ WUni)
3 wuntr 9819 . . . . 5 (𝑢 ∈ WUni → Tr 𝑢)
42, 3syl 17 . . . 4 (((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) ∧ 𝑢𝐴) → Tr 𝑢)
54ralrimiva 3165 . . 3 ((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) → ∀𝑢𝐴 Tr 𝑢)
6 trint 4972 . . 3 (∀𝑢𝐴 Tr 𝑢 → Tr 𝐴)
75, 6syl 17 . 2 ((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) → Tr 𝐴)
82wun0 9832 . . . . 5 (((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) ∧ 𝑢𝐴) → ∅ ∈ 𝑢)
98ralrimiva 3165 . . . 4 ((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) → ∀𝑢𝐴 ∅ ∈ 𝑢)
10 0ex 4995 . . . . 5 ∅ ∈ V
1110elint2 4687 . . . 4 (∅ ∈ 𝐴 ↔ ∀𝑢𝐴 ∅ ∈ 𝑢)
129, 11sylibr 225 . . 3 ((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) → ∅ ∈ 𝐴)
1312ne0d 4134 . 2 ((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅)
142adantlr 697 . . . . . . 7 ((((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) ∧ 𝑢𝐴) → 𝑢 ∈ WUni)
15 intss1 4695 . . . . . . . . . 10 (𝑢𝐴 𝐴𝑢)
1615adantl 469 . . . . . . . . 9 (((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) ∧ 𝑢𝐴) → 𝐴𝑢)
1716sselda 3809 . . . . . . . 8 ((((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) ∧ 𝑢𝐴) ∧ 𝑥 𝐴) → 𝑥𝑢)
1817an32s 634 . . . . . . 7 ((((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) ∧ 𝑢𝐴) → 𝑥𝑢)
1914, 18wununi 9820 . . . . . 6 ((((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) ∧ 𝑢𝐴) → 𝑥𝑢)
2019ralrimiva 3165 . . . . 5 (((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) → ∀𝑢𝐴 𝑥𝑢)
21 vuniex 7191 . . . . . 6 𝑥 ∈ V
2221elint2 4687 . . . . 5 ( 𝑥 𝐴 ↔ ∀𝑢𝐴 𝑥𝑢)
2320, 22sylibr 225 . . . 4 (((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) → 𝑥 𝐴)
2414, 18wunpw 9821 . . . . . 6 ((((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) ∧ 𝑢𝐴) → 𝒫 𝑥𝑢)
2524ralrimiva 3165 . . . . 5 (((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) → ∀𝑢𝐴 𝒫 𝑥𝑢)
26 vpwex 5058 . . . . . 6 𝒫 𝑥 ∈ V
2726elint2 4687 . . . . 5 (𝒫 𝑥 𝐴 ↔ ∀𝑢𝐴 𝒫 𝑥𝑢)
2825, 27sylibr 225 . . . 4 (((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) → 𝒫 𝑥 𝐴)
2914adantlr 697 . . . . . . . 8 (((((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) ∧ 𝑦 𝐴) ∧ 𝑢𝐴) → 𝑢 ∈ WUni)
3018adantlr 697 . . . . . . . 8 (((((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) ∧ 𝑦 𝐴) ∧ 𝑢𝐴) → 𝑥𝑢)
3115adantl 469 . . . . . . . . . 10 ((((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) ∧ 𝑢𝐴) → 𝐴𝑢)
3231sselda 3809 . . . . . . . . 9 (((((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) ∧ 𝑢𝐴) ∧ 𝑦 𝐴) → 𝑦𝑢)
3332an32s 634 . . . . . . . 8 (((((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) ∧ 𝑦 𝐴) ∧ 𝑢𝐴) → 𝑦𝑢)
3429, 30, 33wunpr 9823 . . . . . . 7 (((((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) ∧ 𝑦 𝐴) ∧ 𝑢𝐴) → {𝑥, 𝑦} ∈ 𝑢)
3534ralrimiva 3165 . . . . . 6 ((((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) ∧ 𝑦 𝐴) → ∀𝑢𝐴 {𝑥, 𝑦} ∈ 𝑢)
36 prex 5110 . . . . . . 7 {𝑥, 𝑦} ∈ V
3736elint2 4687 . . . . . 6 ({𝑥, 𝑦} ∈ 𝐴 ↔ ∀𝑢𝐴 {𝑥, 𝑦} ∈ 𝑢)
3835, 37sylibr 225 . . . . 5 ((((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) ∧ 𝑦 𝐴) → {𝑥, 𝑦} ∈ 𝐴)
3938ralrimiva 3165 . . . 4 (((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) → ∀𝑦 𝐴{𝑥, 𝑦} ∈ 𝐴)
4023, 28, 393jca 1151 . . 3 (((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) → ( 𝑥 𝐴 ∧ 𝒫 𝑥 𝐴 ∧ ∀𝑦 𝐴{𝑥, 𝑦} ∈ 𝐴))
4140ralrimiva 3165 . 2 ((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) → ∀𝑥 𝐴( 𝑥 𝐴 ∧ 𝒫 𝑥 𝐴 ∧ ∀𝑦 𝐴{𝑥, 𝑦} ∈ 𝐴))
42 simpr 473 . . . 4 ((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅)
43 intex 5023 . . . 4 (𝐴 ≠ ∅ ↔ 𝐴 ∈ V)
4442, 43sylib 209 . . 3 ((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) → 𝐴 ∈ V)
45 iswun 9818 . . 3 ( 𝐴 ∈ V → ( 𝐴 ∈ WUni ↔ (Tr 𝐴 𝐴 ≠ ∅ ∧ ∀𝑥 𝐴( 𝑥 𝐴 ∧ 𝒫 𝑥 𝐴 ∧ ∀𝑦 𝐴{𝑥, 𝑦} ∈ 𝐴))))
4644, 45syl 17 . 2 ((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) → ( 𝐴 ∈ WUni ↔ (Tr 𝐴 𝐴 ≠ ∅ ∧ ∀𝑥 𝐴( 𝑥 𝐴 ∧ 𝒫 𝑥 𝐴 ∧ ∀𝑦 𝐴{𝑥, 𝑦} ∈ 𝐴))))
477, 13, 41, 46mpbir3and 1435 1 ((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) → 𝐴 ∈ WUni)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1100  wcel 2157  wne 2989  wral 3107  Vcvv 3402  wss 3780  c0 4127  𝒫 cpw 4362  {cpr 4383   cuni 4641   cint 4680  Tr wtr 4957  WUnicwun 9814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-sep 4986  ax-nul 4994  ax-pow 5046  ax-pr 5107  ax-un 7186
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-ral 3112  df-rex 3113  df-v 3404  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-nul 4128  df-pw 4364  df-sn 4382  df-pr 4384  df-uni 4642  df-int 4681  df-tr 4958  df-wun 9816
This theorem is referenced by:  wunccl  9858
  Copyright terms: Public domain W3C validator