MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunelss Structured version   Visualization version   GIF version

Theorem wunelss 10661
Description: The elements of a weak universe are also subsets of it. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wununi.1 (𝜑𝑈 ∈ WUni)
wununi.2 (𝜑𝐴𝑈)
Assertion
Ref Expression
wunelss (𝜑𝐴𝑈)

Proof of Theorem wunelss
StepHypRef Expression
1 wununi.1 . . 3 (𝜑𝑈 ∈ WUni)
2 wuntr 10658 . . 3 (𝑈 ∈ WUni → Tr 𝑈)
31, 2syl 17 . 2 (𝜑 → Tr 𝑈)
4 wununi.2 . 2 (𝜑𝐴𝑈)
5 trss 5225 . 2 (Tr 𝑈 → (𝐴𝑈𝐴𝑈))
63, 4, 5sylc 65 1 (𝜑𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wss 3914  Tr wtr 5214  WUnicwun 10653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-v 3449  df-ss 3931  df-uni 4872  df-tr 5215  df-wun 10655
This theorem is referenced by:  wunss  10665  wunf  10680  wuncval2  10700
  Copyright terms: Public domain W3C validator