Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wunelss | Structured version Visualization version GIF version |
Description: The elements of a weak universe are also subsets of it. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wununi.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wununi.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
Ref | Expression |
---|---|
wunelss | ⊢ (𝜑 → 𝐴 ⊆ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wununi.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
2 | wuntr 10392 | . . 3 ⊢ (𝑈 ∈ WUni → Tr 𝑈) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → Tr 𝑈) |
4 | wununi.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
5 | trss 5196 | . 2 ⊢ (Tr 𝑈 → (𝐴 ∈ 𝑈 → 𝐴 ⊆ 𝑈)) | |
6 | 3, 4, 5 | sylc 65 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3883 Tr wtr 5187 WUnicwun 10387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-v 3424 df-in 3890 df-ss 3900 df-uni 4837 df-tr 5188 df-wun 10389 |
This theorem is referenced by: wunss 10399 wunf 10414 wuncval2 10434 |
Copyright terms: Public domain | W3C validator |