Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xpinintabd Structured version   Visualization version   GIF version

Theorem xpinintabd 41170
Description: Value of the intersection of Cartesian product with the intersection of a nonempty class. (Contributed by RP, 12-Aug-2020.)
Hypothesis
Ref Expression
xpinintabd.x (𝜑 → ∃𝑥𝜓)
Assertion
Ref Expression
xpinintabd (𝜑 → ((𝐴 × 𝐵) ∩ {𝑥𝜓}) = {𝑤 ∈ 𝒫 (𝐴 × 𝐵) ∣ ∃𝑥(𝑤 = ((𝐴 × 𝐵) ∩ 𝑥) ∧ 𝜓)})
Distinct variable groups:   𝜓,𝑤   𝑥,𝑤,𝐴   𝑤,𝐵,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑤)   𝜓(𝑥)

Proof of Theorem xpinintabd
StepHypRef Expression
1 xpinintabd.x . 2 (𝜑 → ∃𝑥𝜓)
21inintabd 41169 1 (𝜑 → ((𝐴 × 𝐵) ∩ {𝑥𝜓}) = {𝑤 ∈ 𝒫 (𝐴 × 𝐵) ∣ ∃𝑥(𝑤 = ((𝐴 × 𝐵) ∩ 𝑥) ∧ 𝜓)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wex 1786  {cab 2717  {crab 3070  cin 3891  𝒫 cpw 4539   cint 4885   × cxp 5588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1545  df-ex 1787  df-nf 1791  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-ral 3071  df-rab 3075  df-v 3433  df-in 3899  df-ss 3909  df-pw 4541  df-int 4886
This theorem is referenced by:  relintab  41173
  Copyright terms: Public domain W3C validator