Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xpinintabd | Structured version Visualization version GIF version |
Description: Value of the intersection of Cartesian product with the intersection of a nonempty class. (Contributed by RP, 12-Aug-2020.) |
Ref | Expression |
---|---|
xpinintabd.x | ⊢ (𝜑 → ∃𝑥𝜓) |
Ref | Expression |
---|---|
xpinintabd | ⊢ (𝜑 → ((𝐴 × 𝐵) ∩ ∩ {𝑥 ∣ 𝜓}) = ∩ {𝑤 ∈ 𝒫 (𝐴 × 𝐵) ∣ ∃𝑥(𝑤 = ((𝐴 × 𝐵) ∩ 𝑥) ∧ 𝜓)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpinintabd.x | . 2 ⊢ (𝜑 → ∃𝑥𝜓) | |
2 | 1 | inintabd 41187 | 1 ⊢ (𝜑 → ((𝐴 × 𝐵) ∩ ∩ {𝑥 ∣ 𝜓}) = ∩ {𝑤 ∈ 𝒫 (𝐴 × 𝐵) ∣ ∃𝑥(𝑤 = ((𝐴 × 𝐵) ∩ 𝑥) ∧ 𝜓)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∃wex 1782 {cab 2715 {crab 3068 ∩ cin 3886 𝒫 cpw 4533 ∩ cint 4879 × cxp 5587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rab 3073 df-v 3434 df-in 3894 df-ss 3904 df-pw 4535 df-int 4880 |
This theorem is referenced by: relintab 41191 |
Copyright terms: Public domain | W3C validator |