Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xpinintabd Structured version   Visualization version   GIF version

Theorem xpinintabd 43569
Description: Value of the intersection of Cartesian product with the intersection of a nonempty class. (Contributed by RP, 12-Aug-2020.)
Hypothesis
Ref Expression
xpinintabd.x (𝜑 → ∃𝑥𝜓)
Assertion
Ref Expression
xpinintabd (𝜑 → ((𝐴 × 𝐵) ∩ {𝑥𝜓}) = {𝑤 ∈ 𝒫 (𝐴 × 𝐵) ∣ ∃𝑥(𝑤 = ((𝐴 × 𝐵) ∩ 𝑥) ∧ 𝜓)})
Distinct variable groups:   𝜓,𝑤   𝑥,𝑤,𝐴   𝑤,𝐵,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑤)   𝜓(𝑥)

Proof of Theorem xpinintabd
StepHypRef Expression
1 xpinintabd.x . 2 (𝜑 → ∃𝑥𝜓)
21inintabd 43568 1 (𝜑 → ((𝐴 × 𝐵) ∩ {𝑥𝜓}) = {𝑤 ∈ 𝒫 (𝐴 × 𝐵) ∣ ∃𝑥(𝑤 = ((𝐴 × 𝐵) ∩ 𝑥) ∧ 𝜓)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  {cab 2707  {crab 3405  cin 3913  𝒫 cpw 4563   cint 4910   × cxp 5636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-in 3921  df-ss 3931  df-pw 4565  df-int 4911
This theorem is referenced by:  relintab  43572
  Copyright terms: Public domain W3C validator