Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relintab Structured version   Visualization version   GIF version

Theorem relintab 41144
Description: Value of the intersection of a class when it is a relation. (Contributed by RP, 12-Aug-2020.)
Assertion
Ref Expression
relintab (Rel {𝑥𝜑} → {𝑥𝜑} = {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = 𝑥𝜑)})
Distinct variable groups:   𝜑,𝑤   𝑥,𝑤
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem relintab
StepHypRef Expression
1 cnvcnv 6092 . . 3 {𝑥𝜑} = ( {𝑥𝜑} ∩ (V × V))
2 incom 4139 . . 3 ( {𝑥𝜑} ∩ (V × V)) = ((V × V) ∩ {𝑥𝜑})
31, 2eqtri 2767 . 2 {𝑥𝜑} = ((V × V) ∩ {𝑥𝜑})
4 dfrel2 6089 . . 3 (Rel {𝑥𝜑} ↔ {𝑥𝜑} = {𝑥𝜑})
54biimpi 215 . 2 (Rel {𝑥𝜑} → {𝑥𝜑} = {𝑥𝜑})
6 relintabex 41142 . . . 4 (Rel {𝑥𝜑} → ∃𝑥𝜑)
76xpinintabd 41141 . . 3 (Rel {𝑥𝜑} → ((V × V) ∩ {𝑥𝜑}) = {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ((V × V) ∩ 𝑥) ∧ 𝜑)})
8 incom 4139 . . . . . . . . 9 ((V × V) ∩ 𝑥) = (𝑥 ∩ (V × V))
9 cnvcnv 6092 . . . . . . . . 9 𝑥 = (𝑥 ∩ (V × V))
108, 9eqtr4i 2770 . . . . . . . 8 ((V × V) ∩ 𝑥) = 𝑥
1110eqeq2i 2752 . . . . . . 7 (𝑤 = ((V × V) ∩ 𝑥) ↔ 𝑤 = 𝑥)
1211anbi1i 623 . . . . . 6 ((𝑤 = ((V × V) ∩ 𝑥) ∧ 𝜑) ↔ (𝑤 = 𝑥𝜑))
1312exbii 1853 . . . . 5 (∃𝑥(𝑤 = ((V × V) ∩ 𝑥) ∧ 𝜑) ↔ ∃𝑥(𝑤 = 𝑥𝜑))
1413rabbii 3405 . . . 4 {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ((V × V) ∩ 𝑥) ∧ 𝜑)} = {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = 𝑥𝜑)}
1514inteqi 4888 . . 3 {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ((V × V) ∩ 𝑥) ∧ 𝜑)} = {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = 𝑥𝜑)}
167, 15eqtrdi 2795 . 2 (Rel {𝑥𝜑} → ((V × V) ∩ {𝑥𝜑}) = {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = 𝑥𝜑)})
173, 5, 163eqtr3a 2803 1 (Rel {𝑥𝜑} → {𝑥𝜑} = {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = 𝑥𝜑)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wex 1785  {cab 2716  {crab 3069  Vcvv 3430  cin 3890  𝒫 cpw 4538   cint 4884   × cxp 5586  ccnv 5587  Rel wrel 5593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ne 2945  df-ral 3070  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-int 4885  df-br 5079  df-opab 5141  df-xp 5594  df-rel 5595  df-cnv 5596
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator