Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > relintab | Structured version Visualization version GIF version |
Description: Value of the intersection of a class when it is a relation. (Contributed by RP, 12-Aug-2020.) |
Ref | Expression |
---|---|
relintab | ⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ∩ {𝑥 ∣ 𝜑} = ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡◡𝑥 ∧ 𝜑)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvcnv 6110 | . . 3 ⊢ ◡◡∩ {𝑥 ∣ 𝜑} = (∩ {𝑥 ∣ 𝜑} ∩ (V × V)) | |
2 | incom 4141 | . . 3 ⊢ (∩ {𝑥 ∣ 𝜑} ∩ (V × V)) = ((V × V) ∩ ∩ {𝑥 ∣ 𝜑}) | |
3 | 1, 2 | eqtri 2764 | . 2 ⊢ ◡◡∩ {𝑥 ∣ 𝜑} = ((V × V) ∩ ∩ {𝑥 ∣ 𝜑}) |
4 | dfrel2 6107 | . . 3 ⊢ (Rel ∩ {𝑥 ∣ 𝜑} ↔ ◡◡∩ {𝑥 ∣ 𝜑} = ∩ {𝑥 ∣ 𝜑}) | |
5 | 4 | biimpi 215 | . 2 ⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ◡◡∩ {𝑥 ∣ 𝜑} = ∩ {𝑥 ∣ 𝜑}) |
6 | relintabex 41402 | . . . 4 ⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ∃𝑥𝜑) | |
7 | 6 | xpinintabd 41401 | . . 3 ⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ((V × V) ∩ ∩ {𝑥 ∣ 𝜑}) = ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ((V × V) ∩ 𝑥) ∧ 𝜑)}) |
8 | incom 4141 | . . . . . . . . 9 ⊢ ((V × V) ∩ 𝑥) = (𝑥 ∩ (V × V)) | |
9 | cnvcnv 6110 | . . . . . . . . 9 ⊢ ◡◡𝑥 = (𝑥 ∩ (V × V)) | |
10 | 8, 9 | eqtr4i 2767 | . . . . . . . 8 ⊢ ((V × V) ∩ 𝑥) = ◡◡𝑥 |
11 | 10 | eqeq2i 2749 | . . . . . . 7 ⊢ (𝑤 = ((V × V) ∩ 𝑥) ↔ 𝑤 = ◡◡𝑥) |
12 | 11 | anbi1i 625 | . . . . . 6 ⊢ ((𝑤 = ((V × V) ∩ 𝑥) ∧ 𝜑) ↔ (𝑤 = ◡◡𝑥 ∧ 𝜑)) |
13 | 12 | exbii 1848 | . . . . 5 ⊢ (∃𝑥(𝑤 = ((V × V) ∩ 𝑥) ∧ 𝜑) ↔ ∃𝑥(𝑤 = ◡◡𝑥 ∧ 𝜑)) |
14 | 13 | rabbii 3415 | . . . 4 ⊢ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ((V × V) ∩ 𝑥) ∧ 𝜑)} = {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡◡𝑥 ∧ 𝜑)} |
15 | 14 | inteqi 4890 | . . 3 ⊢ ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ((V × V) ∩ 𝑥) ∧ 𝜑)} = ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡◡𝑥 ∧ 𝜑)} |
16 | 7, 15 | eqtrdi 2792 | . 2 ⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ((V × V) ∩ ∩ {𝑥 ∣ 𝜑}) = ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡◡𝑥 ∧ 𝜑)}) |
17 | 3, 5, 16 | 3eqtr3a 2800 | 1 ⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ∩ {𝑥 ∣ 𝜑} = ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡◡𝑥 ∧ 𝜑)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∃wex 1779 {cab 2713 {crab 3303 Vcvv 3437 ∩ cin 3891 𝒫 cpw 4539 ∩ cint 4886 × cxp 5598 ◡ccnv 5599 Rel wrel 5605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2942 df-ral 3063 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-int 4887 df-br 5082 df-opab 5144 df-xp 5606 df-rel 5607 df-cnv 5608 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |