| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > relintab | Structured version Visualization version GIF version | ||
| Description: Value of the intersection of a class when it is a relation. (Contributed by RP, 12-Aug-2020.) |
| Ref | Expression |
|---|---|
| relintab | ⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ∩ {𝑥 ∣ 𝜑} = ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡◡𝑥 ∧ 𝜑)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvcnv 6139 | . . 3 ⊢ ◡◡∩ {𝑥 ∣ 𝜑} = (∩ {𝑥 ∣ 𝜑} ∩ (V × V)) | |
| 2 | incom 4159 | . . 3 ⊢ (∩ {𝑥 ∣ 𝜑} ∩ (V × V)) = ((V × V) ∩ ∩ {𝑥 ∣ 𝜑}) | |
| 3 | 1, 2 | eqtri 2754 | . 2 ⊢ ◡◡∩ {𝑥 ∣ 𝜑} = ((V × V) ∩ ∩ {𝑥 ∣ 𝜑}) |
| 4 | dfrel2 6136 | . . 3 ⊢ (Rel ∩ {𝑥 ∣ 𝜑} ↔ ◡◡∩ {𝑥 ∣ 𝜑} = ∩ {𝑥 ∣ 𝜑}) | |
| 5 | 4 | biimpi 216 | . 2 ⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ◡◡∩ {𝑥 ∣ 𝜑} = ∩ {𝑥 ∣ 𝜑}) |
| 6 | relintabex 43613 | . . . 4 ⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ∃𝑥𝜑) | |
| 7 | 6 | xpinintabd 43612 | . . 3 ⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ((V × V) ∩ ∩ {𝑥 ∣ 𝜑}) = ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ((V × V) ∩ 𝑥) ∧ 𝜑)}) |
| 8 | incom 4159 | . . . . . . . . 9 ⊢ ((V × V) ∩ 𝑥) = (𝑥 ∩ (V × V)) | |
| 9 | cnvcnv 6139 | . . . . . . . . 9 ⊢ ◡◡𝑥 = (𝑥 ∩ (V × V)) | |
| 10 | 8, 9 | eqtr4i 2757 | . . . . . . . 8 ⊢ ((V × V) ∩ 𝑥) = ◡◡𝑥 |
| 11 | 10 | eqeq2i 2744 | . . . . . . 7 ⊢ (𝑤 = ((V × V) ∩ 𝑥) ↔ 𝑤 = ◡◡𝑥) |
| 12 | 11 | anbi1i 624 | . . . . . 6 ⊢ ((𝑤 = ((V × V) ∩ 𝑥) ∧ 𝜑) ↔ (𝑤 = ◡◡𝑥 ∧ 𝜑)) |
| 13 | 12 | exbii 1849 | . . . . 5 ⊢ (∃𝑥(𝑤 = ((V × V) ∩ 𝑥) ∧ 𝜑) ↔ ∃𝑥(𝑤 = ◡◡𝑥 ∧ 𝜑)) |
| 14 | 13 | rabbii 3400 | . . . 4 ⊢ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ((V × V) ∩ 𝑥) ∧ 𝜑)} = {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡◡𝑥 ∧ 𝜑)} |
| 15 | 14 | inteqi 4901 | . . 3 ⊢ ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ((V × V) ∩ 𝑥) ∧ 𝜑)} = ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡◡𝑥 ∧ 𝜑)} |
| 16 | 7, 15 | eqtrdi 2782 | . 2 ⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ((V × V) ∩ ∩ {𝑥 ∣ 𝜑}) = ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡◡𝑥 ∧ 𝜑)}) |
| 17 | 3, 5, 16 | 3eqtr3a 2790 | 1 ⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ∩ {𝑥 ∣ 𝜑} = ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡◡𝑥 ∧ 𝜑)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 {cab 2709 {crab 3395 Vcvv 3436 ∩ cin 3901 𝒫 cpw 4550 ∩ cint 4897 × cxp 5614 ◡ccnv 5615 Rel wrel 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-int 4898 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-cnv 5624 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |