| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > relintab | Structured version Visualization version GIF version | ||
| Description: Value of the intersection of a class when it is a relation. (Contributed by RP, 12-Aug-2020.) |
| Ref | Expression |
|---|---|
| relintab | ⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ∩ {𝑥 ∣ 𝜑} = ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡◡𝑥 ∧ 𝜑)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvcnv 6167 | . . 3 ⊢ ◡◡∩ {𝑥 ∣ 𝜑} = (∩ {𝑥 ∣ 𝜑} ∩ (V × V)) | |
| 2 | incom 4174 | . . 3 ⊢ (∩ {𝑥 ∣ 𝜑} ∩ (V × V)) = ((V × V) ∩ ∩ {𝑥 ∣ 𝜑}) | |
| 3 | 1, 2 | eqtri 2753 | . 2 ⊢ ◡◡∩ {𝑥 ∣ 𝜑} = ((V × V) ∩ ∩ {𝑥 ∣ 𝜑}) |
| 4 | dfrel2 6164 | . . 3 ⊢ (Rel ∩ {𝑥 ∣ 𝜑} ↔ ◡◡∩ {𝑥 ∣ 𝜑} = ∩ {𝑥 ∣ 𝜑}) | |
| 5 | 4 | biimpi 216 | . 2 ⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ◡◡∩ {𝑥 ∣ 𝜑} = ∩ {𝑥 ∣ 𝜑}) |
| 6 | relintabex 43563 | . . . 4 ⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ∃𝑥𝜑) | |
| 7 | 6 | xpinintabd 43562 | . . 3 ⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ((V × V) ∩ ∩ {𝑥 ∣ 𝜑}) = ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ((V × V) ∩ 𝑥) ∧ 𝜑)}) |
| 8 | incom 4174 | . . . . . . . . 9 ⊢ ((V × V) ∩ 𝑥) = (𝑥 ∩ (V × V)) | |
| 9 | cnvcnv 6167 | . . . . . . . . 9 ⊢ ◡◡𝑥 = (𝑥 ∩ (V × V)) | |
| 10 | 8, 9 | eqtr4i 2756 | . . . . . . . 8 ⊢ ((V × V) ∩ 𝑥) = ◡◡𝑥 |
| 11 | 10 | eqeq2i 2743 | . . . . . . 7 ⊢ (𝑤 = ((V × V) ∩ 𝑥) ↔ 𝑤 = ◡◡𝑥) |
| 12 | 11 | anbi1i 624 | . . . . . 6 ⊢ ((𝑤 = ((V × V) ∩ 𝑥) ∧ 𝜑) ↔ (𝑤 = ◡◡𝑥 ∧ 𝜑)) |
| 13 | 12 | exbii 1848 | . . . . 5 ⊢ (∃𝑥(𝑤 = ((V × V) ∩ 𝑥) ∧ 𝜑) ↔ ∃𝑥(𝑤 = ◡◡𝑥 ∧ 𝜑)) |
| 14 | 13 | rabbii 3414 | . . . 4 ⊢ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ((V × V) ∩ 𝑥) ∧ 𝜑)} = {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡◡𝑥 ∧ 𝜑)} |
| 15 | 14 | inteqi 4916 | . . 3 ⊢ ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ((V × V) ∩ 𝑥) ∧ 𝜑)} = ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡◡𝑥 ∧ 𝜑)} |
| 16 | 7, 15 | eqtrdi 2781 | . 2 ⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ((V × V) ∩ ∩ {𝑥 ∣ 𝜑}) = ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡◡𝑥 ∧ 𝜑)}) |
| 17 | 3, 5, 16 | 3eqtr3a 2789 | 1 ⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ∩ {𝑥 ∣ 𝜑} = ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡◡𝑥 ∧ 𝜑)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 {cab 2708 {crab 3408 Vcvv 3450 ∩ cin 3915 𝒫 cpw 4565 ∩ cint 4912 × cxp 5638 ◡ccnv 5639 Rel wrel 5645 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-int 4913 df-br 5110 df-opab 5172 df-xp 5646 df-rel 5647 df-cnv 5648 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |