Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relintab Structured version   Visualization version   GIF version

Theorem relintab 41161
Description: Value of the intersection of a class when it is a relation. (Contributed by RP, 12-Aug-2020.)
Assertion
Ref Expression
relintab (Rel {𝑥𝜑} → {𝑥𝜑} = {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = 𝑥𝜑)})
Distinct variable groups:   𝜑,𝑤   𝑥,𝑤
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem relintab
StepHypRef Expression
1 cnvcnv 6094 . . 3 {𝑥𝜑} = ( {𝑥𝜑} ∩ (V × V))
2 incom 4140 . . 3 ( {𝑥𝜑} ∩ (V × V)) = ((V × V) ∩ {𝑥𝜑})
31, 2eqtri 2768 . 2 {𝑥𝜑} = ((V × V) ∩ {𝑥𝜑})
4 dfrel2 6091 . . 3 (Rel {𝑥𝜑} ↔ {𝑥𝜑} = {𝑥𝜑})
54biimpi 215 . 2 (Rel {𝑥𝜑} → {𝑥𝜑} = {𝑥𝜑})
6 relintabex 41159 . . . 4 (Rel {𝑥𝜑} → ∃𝑥𝜑)
76xpinintabd 41158 . . 3 (Rel {𝑥𝜑} → ((V × V) ∩ {𝑥𝜑}) = {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ((V × V) ∩ 𝑥) ∧ 𝜑)})
8 incom 4140 . . . . . . . . 9 ((V × V) ∩ 𝑥) = (𝑥 ∩ (V × V))
9 cnvcnv 6094 . . . . . . . . 9 𝑥 = (𝑥 ∩ (V × V))
108, 9eqtr4i 2771 . . . . . . . 8 ((V × V) ∩ 𝑥) = 𝑥
1110eqeq2i 2753 . . . . . . 7 (𝑤 = ((V × V) ∩ 𝑥) ↔ 𝑤 = 𝑥)
1211anbi1i 624 . . . . . 6 ((𝑤 = ((V × V) ∩ 𝑥) ∧ 𝜑) ↔ (𝑤 = 𝑥𝜑))
1312exbii 1854 . . . . 5 (∃𝑥(𝑤 = ((V × V) ∩ 𝑥) ∧ 𝜑) ↔ ∃𝑥(𝑤 = 𝑥𝜑))
1413rabbii 3406 . . . 4 {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ((V × V) ∩ 𝑥) ∧ 𝜑)} = {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = 𝑥𝜑)}
1514inteqi 4889 . . 3 {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ((V × V) ∩ 𝑥) ∧ 𝜑)} = {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = 𝑥𝜑)}
167, 15eqtrdi 2796 . 2 (Rel {𝑥𝜑} → ((V × V) ∩ {𝑥𝜑}) = {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = 𝑥𝜑)})
173, 5, 163eqtr3a 2804 1 (Rel {𝑥𝜑} → {𝑥𝜑} = {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = 𝑥𝜑)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wex 1786  {cab 2717  {crab 3070  Vcvv 3431  cin 3891  𝒫 cpw 4539   cint 4885   × cxp 5588  ccnv 5589  Rel wrel 5595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-ne 2946  df-ral 3071  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-int 4886  df-br 5080  df-opab 5142  df-xp 5596  df-rel 5597  df-cnv 5598
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator