Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relintab Structured version   Visualization version   GIF version

Theorem relintab 43615
Description: Value of the intersection of a class when it is a relation. (Contributed by RP, 12-Aug-2020.)
Assertion
Ref Expression
relintab (Rel {𝑥𝜑} → {𝑥𝜑} = {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = 𝑥𝜑)})
Distinct variable groups:   𝜑,𝑤   𝑥,𝑤
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem relintab
StepHypRef Expression
1 cnvcnv 6139 . . 3 {𝑥𝜑} = ( {𝑥𝜑} ∩ (V × V))
2 incom 4159 . . 3 ( {𝑥𝜑} ∩ (V × V)) = ((V × V) ∩ {𝑥𝜑})
31, 2eqtri 2754 . 2 {𝑥𝜑} = ((V × V) ∩ {𝑥𝜑})
4 dfrel2 6136 . . 3 (Rel {𝑥𝜑} ↔ {𝑥𝜑} = {𝑥𝜑})
54biimpi 216 . 2 (Rel {𝑥𝜑} → {𝑥𝜑} = {𝑥𝜑})
6 relintabex 43613 . . . 4 (Rel {𝑥𝜑} → ∃𝑥𝜑)
76xpinintabd 43612 . . 3 (Rel {𝑥𝜑} → ((V × V) ∩ {𝑥𝜑}) = {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ((V × V) ∩ 𝑥) ∧ 𝜑)})
8 incom 4159 . . . . . . . . 9 ((V × V) ∩ 𝑥) = (𝑥 ∩ (V × V))
9 cnvcnv 6139 . . . . . . . . 9 𝑥 = (𝑥 ∩ (V × V))
108, 9eqtr4i 2757 . . . . . . . 8 ((V × V) ∩ 𝑥) = 𝑥
1110eqeq2i 2744 . . . . . . 7 (𝑤 = ((V × V) ∩ 𝑥) ↔ 𝑤 = 𝑥)
1211anbi1i 624 . . . . . 6 ((𝑤 = ((V × V) ∩ 𝑥) ∧ 𝜑) ↔ (𝑤 = 𝑥𝜑))
1312exbii 1849 . . . . 5 (∃𝑥(𝑤 = ((V × V) ∩ 𝑥) ∧ 𝜑) ↔ ∃𝑥(𝑤 = 𝑥𝜑))
1413rabbii 3400 . . . 4 {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ((V × V) ∩ 𝑥) ∧ 𝜑)} = {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = 𝑥𝜑)}
1514inteqi 4901 . . 3 {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ((V × V) ∩ 𝑥) ∧ 𝜑)} = {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = 𝑥𝜑)}
167, 15eqtrdi 2782 . 2 (Rel {𝑥𝜑} → ((V × V) ∩ {𝑥𝜑}) = {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = 𝑥𝜑)})
173, 5, 163eqtr3a 2790 1 (Rel {𝑥𝜑} → {𝑥𝜑} = {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = 𝑥𝜑)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wex 1780  {cab 2709  {crab 3395  Vcvv 3436  cin 3901  𝒫 cpw 4550   cint 4897   × cxp 5614  ccnv 5615  Rel wrel 5621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-int 4898  df-br 5092  df-opab 5154  df-xp 5622  df-rel 5623  df-cnv 5624
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator