Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relintab Structured version   Visualization version   GIF version

Theorem relintab 38723
Description: Value of the intersection of a class when it is a relation. (Contributed by RP, 12-Aug-2020.)
Assertion
Ref Expression
relintab (Rel {𝑥𝜑} → {𝑥𝜑} = {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = 𝑥𝜑)})
Distinct variable groups:   𝜑,𝑤   𝑥,𝑤
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem relintab
StepHypRef Expression
1 cnvcnv 5827 . . 3 {𝑥𝜑} = ( {𝑥𝜑} ∩ (V × V))
2 incom 4032 . . 3 ( {𝑥𝜑} ∩ (V × V)) = ((V × V) ∩ {𝑥𝜑})
31, 2eqtri 2849 . 2 {𝑥𝜑} = ((V × V) ∩ {𝑥𝜑})
4 dfrel2 5824 . . 3 (Rel {𝑥𝜑} ↔ {𝑥𝜑} = {𝑥𝜑})
54biimpi 208 . 2 (Rel {𝑥𝜑} → {𝑥𝜑} = {𝑥𝜑})
6 relintabex 38721 . . . 4 (Rel {𝑥𝜑} → ∃𝑥𝜑)
76xpinintabd 38720 . . 3 (Rel {𝑥𝜑} → ((V × V) ∩ {𝑥𝜑}) = {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ((V × V) ∩ 𝑥) ∧ 𝜑)})
8 incom 4032 . . . . . . . . 9 ((V × V) ∩ 𝑥) = (𝑥 ∩ (V × V))
9 cnvcnv 5827 . . . . . . . . 9 𝑥 = (𝑥 ∩ (V × V))
108, 9eqtr4i 2852 . . . . . . . 8 ((V × V) ∩ 𝑥) = 𝑥
1110eqeq2i 2837 . . . . . . 7 (𝑤 = ((V × V) ∩ 𝑥) ↔ 𝑤 = 𝑥)
1211anbi1i 617 . . . . . 6 ((𝑤 = ((V × V) ∩ 𝑥) ∧ 𝜑) ↔ (𝑤 = 𝑥𝜑))
1312exbii 1947 . . . . 5 (∃𝑥(𝑤 = ((V × V) ∩ 𝑥) ∧ 𝜑) ↔ ∃𝑥(𝑤 = 𝑥𝜑))
1413rabbii 3398 . . . 4 {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ((V × V) ∩ 𝑥) ∧ 𝜑)} = {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = 𝑥𝜑)}
1514inteqi 4701 . . 3 {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ((V × V) ∩ 𝑥) ∧ 𝜑)} = {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = 𝑥𝜑)}
167, 15syl6eq 2877 . 2 (Rel {𝑥𝜑} → ((V × V) ∩ {𝑥𝜑}) = {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = 𝑥𝜑)})
173, 5, 163eqtr3a 2885 1 (Rel {𝑥𝜑} → {𝑥𝜑} = {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = 𝑥𝜑)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1656  wex 1878  {cab 2811  {crab 3121  Vcvv 3414  cin 3797  𝒫 cpw 4378   cint 4697   × cxp 5340  ccnv 5341  Rel wrel 5347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pr 5127
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-int 4698  df-br 4874  df-opab 4936  df-xp 5348  df-rel 5349  df-cnv 5350
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator