![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > relintabex | Structured version Visualization version GIF version |
Description: If the intersection of a class is a relation, then the class is nonempty. (Contributed by RP, 12-Aug-2020.) |
Ref | Expression |
---|---|
relintabex | ⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnex 5335 | . . . 4 ⊢ (¬ ∩ {𝑥 ∣ 𝜑} ∈ V ↔ ∩ {𝑥 ∣ 𝜑} = V) | |
2 | nrelv 5796 | . . . . 5 ⊢ ¬ Rel V | |
3 | releq 5772 | . . . . 5 ⊢ (∩ {𝑥 ∣ 𝜑} = V → (Rel ∩ {𝑥 ∣ 𝜑} ↔ Rel V)) | |
4 | 2, 3 | mtbiri 326 | . . . 4 ⊢ (∩ {𝑥 ∣ 𝜑} = V → ¬ Rel ∩ {𝑥 ∣ 𝜑}) |
5 | 1, 4 | sylbi 216 | . . 3 ⊢ (¬ ∩ {𝑥 ∣ 𝜑} ∈ V → ¬ Rel ∩ {𝑥 ∣ 𝜑}) |
6 | 5 | con4i 114 | . 2 ⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ∩ {𝑥 ∣ 𝜑} ∈ V) |
7 | intexab 5336 | . 2 ⊢ (∃𝑥𝜑 ↔ ∩ {𝑥 ∣ 𝜑} ∈ V) | |
8 | 6, 7 | sylibr 233 | 1 ⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1533 ∃wex 1773 ∈ wcel 2098 {cab 2702 Vcvv 3463 ∩ cint 4944 Rel wrel 5677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-int 4945 df-opab 5206 df-xp 5678 df-rel 5679 |
This theorem is referenced by: relintab 43078 |
Copyright terms: Public domain | W3C validator |