Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relintabex Structured version   Visualization version   GIF version

Theorem relintabex 43613
Description: If the intersection of a class is a relation, then the class is nonempty. (Contributed by RP, 12-Aug-2020.)
Assertion
Ref Expression
relintabex (Rel {𝑥𝜑} → ∃𝑥𝜑)

Proof of Theorem relintabex
StepHypRef Expression
1 intnex 5283 . . . 4 {𝑥𝜑} ∈ V ↔ {𝑥𝜑} = V)
2 nrelv 5740 . . . . 5 ¬ Rel V
3 releq 5717 . . . . 5 ( {𝑥𝜑} = V → (Rel {𝑥𝜑} ↔ Rel V))
42, 3mtbiri 327 . . . 4 ( {𝑥𝜑} = V → ¬ Rel {𝑥𝜑})
51, 4sylbi 217 . . 3 {𝑥𝜑} ∈ V → ¬ Rel {𝑥𝜑})
65con4i 114 . 2 (Rel {𝑥𝜑} → {𝑥𝜑} ∈ V)
7 intexab 5284 . 2 (∃𝑥𝜑 {𝑥𝜑} ∈ V)
86, 7sylibr 234 1 (Rel {𝑥𝜑} → ∃𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wex 1780  wcel 2111  {cab 2709  Vcvv 3436   cint 4897  Rel wrel 5621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-int 4898  df-opab 5154  df-xp 5622  df-rel 5623
This theorem is referenced by:  relintab  43615
  Copyright terms: Public domain W3C validator