Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relintabex Structured version   Visualization version   GIF version

Theorem relintabex 41142
Description: If the intersection of a class is a relation, then the class is nonempty. (Contributed by RP, 12-Aug-2020.)
Assertion
Ref Expression
relintabex (Rel {𝑥𝜑} → ∃𝑥𝜑)

Proof of Theorem relintabex
StepHypRef Expression
1 intnex 5265 . . . 4 {𝑥𝜑} ∈ V ↔ {𝑥𝜑} = V)
2 nrelv 5707 . . . . 5 ¬ Rel V
3 releq 5685 . . . . 5 ( {𝑥𝜑} = V → (Rel {𝑥𝜑} ↔ Rel V))
42, 3mtbiri 326 . . . 4 ( {𝑥𝜑} = V → ¬ Rel {𝑥𝜑})
51, 4sylbi 216 . . 3 {𝑥𝜑} ∈ V → ¬ Rel {𝑥𝜑})
65con4i 114 . 2 (Rel {𝑥𝜑} → {𝑥𝜑} ∈ V)
7 intexab 5266 . 2 (∃𝑥𝜑 {𝑥𝜑} ∈ V)
86, 7sylibr 233 1 (Rel {𝑥𝜑} → ∃𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wex 1785  wcel 2109  {cab 2716  Vcvv 3430   cint 4884  Rel wrel 5593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ne 2945  df-ral 3070  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-int 4885  df-opab 5141  df-xp 5594  df-rel 5595
This theorem is referenced by:  relintab  41144
  Copyright terms: Public domain W3C validator