Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relintabex Structured version   Visualization version   GIF version

Theorem relintabex 42332
Description: If the intersection of a class is a relation, then the class is nonempty. (Contributed by RP, 12-Aug-2020.)
Assertion
Ref Expression
relintabex (Rel {𝑥𝜑} → ∃𝑥𝜑)

Proof of Theorem relintabex
StepHypRef Expression
1 intnex 5339 . . . 4 {𝑥𝜑} ∈ V ↔ {𝑥𝜑} = V)
2 nrelv 5801 . . . . 5 ¬ Rel V
3 releq 5777 . . . . 5 ( {𝑥𝜑} = V → (Rel {𝑥𝜑} ↔ Rel V))
42, 3mtbiri 327 . . . 4 ( {𝑥𝜑} = V → ¬ Rel {𝑥𝜑})
51, 4sylbi 216 . . 3 {𝑥𝜑} ∈ V → ¬ Rel {𝑥𝜑})
65con4i 114 . 2 (Rel {𝑥𝜑} → {𝑥𝜑} ∈ V)
7 intexab 5340 . 2 (∃𝑥𝜑 {𝑥𝜑} ∈ V)
86, 7sylibr 233 1 (Rel {𝑥𝜑} → ∃𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1542  wex 1782  wcel 2107  {cab 2710  Vcvv 3475   cint 4951  Rel wrel 5682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-int 4952  df-opab 5212  df-xp 5683  df-rel 5684
This theorem is referenced by:  relintab  42334
  Copyright terms: Public domain W3C validator