| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > relintabex | Structured version Visualization version GIF version | ||
| Description: If the intersection of a class is a relation, then the class is nonempty. (Contributed by RP, 12-Aug-2020.) |
| Ref | Expression |
|---|---|
| relintabex | ⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnex 5285 | . . . 4 ⊢ (¬ ∩ {𝑥 ∣ 𝜑} ∈ V ↔ ∩ {𝑥 ∣ 𝜑} = V) | |
| 2 | nrelv 5744 | . . . . 5 ⊢ ¬ Rel V | |
| 3 | releq 5721 | . . . . 5 ⊢ (∩ {𝑥 ∣ 𝜑} = V → (Rel ∩ {𝑥 ∣ 𝜑} ↔ Rel V)) | |
| 4 | 2, 3 | mtbiri 327 | . . . 4 ⊢ (∩ {𝑥 ∣ 𝜑} = V → ¬ Rel ∩ {𝑥 ∣ 𝜑}) |
| 5 | 1, 4 | sylbi 217 | . . 3 ⊢ (¬ ∩ {𝑥 ∣ 𝜑} ∈ V → ¬ Rel ∩ {𝑥 ∣ 𝜑}) |
| 6 | 5 | con4i 114 | . 2 ⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ∩ {𝑥 ∣ 𝜑} ∈ V) |
| 7 | intexab 5286 | . 2 ⊢ (∃𝑥𝜑 ↔ ∩ {𝑥 ∣ 𝜑} ∈ V) | |
| 8 | 6, 7 | sylibr 234 | 1 ⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∃wex 1780 ∈ wcel 2113 {cab 2711 Vcvv 3437 ∩ cint 4897 Rel wrel 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-int 4898 df-opab 5156 df-xp 5625 df-rel 5626 |
| This theorem is referenced by: relintab 43700 |
| Copyright terms: Public domain | W3C validator |