Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > relintabex | Structured version Visualization version GIF version |
Description: If the intersection of a class is a relation, then the class is nonempty. (Contributed by RP, 12-Aug-2020.) |
Ref | Expression |
---|---|
relintabex | ⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnex 5265 | . . . 4 ⊢ (¬ ∩ {𝑥 ∣ 𝜑} ∈ V ↔ ∩ {𝑥 ∣ 𝜑} = V) | |
2 | nrelv 5707 | . . . . 5 ⊢ ¬ Rel V | |
3 | releq 5685 | . . . . 5 ⊢ (∩ {𝑥 ∣ 𝜑} = V → (Rel ∩ {𝑥 ∣ 𝜑} ↔ Rel V)) | |
4 | 2, 3 | mtbiri 326 | . . . 4 ⊢ (∩ {𝑥 ∣ 𝜑} = V → ¬ Rel ∩ {𝑥 ∣ 𝜑}) |
5 | 1, 4 | sylbi 216 | . . 3 ⊢ (¬ ∩ {𝑥 ∣ 𝜑} ∈ V → ¬ Rel ∩ {𝑥 ∣ 𝜑}) |
6 | 5 | con4i 114 | . 2 ⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ∩ {𝑥 ∣ 𝜑} ∈ V) |
7 | intexab 5266 | . 2 ⊢ (∃𝑥𝜑 ↔ ∩ {𝑥 ∣ 𝜑} ∈ V) | |
8 | 6, 7 | sylibr 233 | 1 ⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∃wex 1785 ∈ wcel 2109 {cab 2716 Vcvv 3430 ∩ cint 4884 Rel wrel 5593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-ral 3070 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-int 4885 df-opab 5141 df-xp 5594 df-rel 5595 |
This theorem is referenced by: relintab 41144 |
Copyright terms: Public domain | W3C validator |