| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > relintabex | Structured version Visualization version GIF version | ||
| Description: If the intersection of a class is a relation, then the class is nonempty. (Contributed by RP, 12-Aug-2020.) |
| Ref | Expression |
|---|---|
| relintabex | ⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnex 5320 | . . . 4 ⊢ (¬ ∩ {𝑥 ∣ 𝜑} ∈ V ↔ ∩ {𝑥 ∣ 𝜑} = V) | |
| 2 | nrelv 5784 | . . . . 5 ⊢ ¬ Rel V | |
| 3 | releq 5760 | . . . . 5 ⊢ (∩ {𝑥 ∣ 𝜑} = V → (Rel ∩ {𝑥 ∣ 𝜑} ↔ Rel V)) | |
| 4 | 2, 3 | mtbiri 327 | . . . 4 ⊢ (∩ {𝑥 ∣ 𝜑} = V → ¬ Rel ∩ {𝑥 ∣ 𝜑}) |
| 5 | 1, 4 | sylbi 217 | . . 3 ⊢ (¬ ∩ {𝑥 ∣ 𝜑} ∈ V → ¬ Rel ∩ {𝑥 ∣ 𝜑}) |
| 6 | 5 | con4i 114 | . 2 ⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ∩ {𝑥 ∣ 𝜑} ∈ V) |
| 7 | intexab 5321 | . 2 ⊢ (∃𝑥𝜑 ↔ ∩ {𝑥 ∣ 𝜑} ∈ V) | |
| 8 | 6, 7 | sylibr 234 | 1 ⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2714 Vcvv 3464 ∩ cint 4927 Rel wrel 5664 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-int 4928 df-opab 5187 df-xp 5665 df-rel 5666 |
| This theorem is referenced by: relintab 43574 |
| Copyright terms: Public domain | W3C validator |