MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfreg Structured version   Visualization version   GIF version

Theorem zfreg 9555
Description: The Axiom of Regularity using abbreviations. Axiom 6 of [TakeutiZaring] p. 21. This is called the "weak form". Axiom Reg of [BellMachover] p. 480. There is also a "strong form", not requiring that 𝐴 be a set, that can be proved with more difficulty (see zfregs 9692). (Contributed by NM, 26-Nov-1995.) Replace sethood hypothesis with sethood antecedent. (Revised by BJ, 27-Apr-2021.)
Assertion
Ref Expression
zfreg ((𝐴𝑉𝐴 ≠ ∅) → ∃𝑥𝐴 (𝑥𝐴) = ∅)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem zfreg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 n0 4319 . . . 4 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
21biimpi 216 . . 3 (𝐴 ≠ ∅ → ∃𝑥 𝑥𝐴)
32anim2i 617 . 2 ((𝐴𝑉𝐴 ≠ ∅) → (𝐴𝑉 ∧ ∃𝑥 𝑥𝐴))
4 zfregcl 9554 . . 3 (𝐴𝑉 → (∃𝑥 𝑥𝐴 → ∃𝑥𝐴𝑦𝑥 ¬ 𝑦𝐴))
54imp 406 . 2 ((𝐴𝑉 ∧ ∃𝑥 𝑥𝐴) → ∃𝑥𝐴𝑦𝑥 ¬ 𝑦𝐴)
6 disj 4416 . . . 4 ((𝑥𝐴) = ∅ ↔ ∀𝑦𝑥 ¬ 𝑦𝐴)
76rexbii 3077 . . 3 (∃𝑥𝐴 (𝑥𝐴) = ∅ ↔ ∃𝑥𝐴𝑦𝑥 ¬ 𝑦𝐴)
87biimpri 228 . 2 (∃𝑥𝐴𝑦𝑥 ¬ 𝑦𝐴 → ∃𝑥𝐴 (𝑥𝐴) = ∅)
93, 5, 83syl 18 1 ((𝐴𝑉𝐴 ≠ ∅) → ∃𝑥𝐴 (𝑥𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2926  wral 3045  wrex 3054  cin 3916  c0 4299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-reg 9552
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-dif 3920  df-in 3924  df-nul 4300
This theorem is referenced by:  zfregfr  9565  en3lp  9574  inf3lem3  9590  bj-restreg  37094  setindtr  43020
  Copyright terms: Public domain W3C validator