Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zfreg | Structured version Visualization version GIF version |
Description: The Axiom of Regularity using abbreviations. Axiom 6 of [TakeutiZaring] p. 21. This is called the "weak form". Axiom Reg of [BellMachover] p. 480. There is also a "strong form", not requiring that 𝐴 be a set, that can be proved with more difficulty (see zfregs 9421). (Contributed by NM, 26-Nov-1995.) Replace sethood hypothesis with sethood antecedent. (Revised by BJ, 27-Apr-2021.) |
Ref | Expression |
---|---|
zfreg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4277 | . . . 4 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
2 | 1 | biimpi 215 | . . 3 ⊢ (𝐴 ≠ ∅ → ∃𝑥 𝑥 ∈ 𝐴) |
3 | 2 | anim2i 616 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → (𝐴 ∈ 𝑉 ∧ ∃𝑥 𝑥 ∈ 𝐴)) |
4 | zfregcl 9283 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝐴)) | |
5 | 4 | imp 406 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∃𝑥 𝑥 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝐴) |
6 | disj 4378 | . . . 4 ⊢ ((𝑥 ∩ 𝐴) = ∅ ↔ ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝐴) | |
7 | 6 | rexbii 3177 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅ ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝐴) |
8 | 7 | biimpri 227 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝐴 → ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅) |
9 | 3, 5, 8 | 3syl 18 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 ∩ cin 3882 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 ax-reg 9281 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-dif 3886 df-in 3890 df-nul 4254 |
This theorem is referenced by: zfregfr 9293 en3lp 9302 inf3lem3 9318 bj-restreg 35197 setindtr 40762 |
Copyright terms: Public domain | W3C validator |