Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zfreg | Structured version Visualization version GIF version |
Description: The Axiom of Regularity using abbreviations. Axiom 6 of [TakeutiZaring] p. 21. This is called the "weak form". Axiom Reg of [BellMachover] p. 480. There is also a "strong form", not requiring that 𝐴 be a set, that can be proved with more difficulty (see zfregs 9220). (Contributed by NM, 26-Nov-1995.) Replace sethood hypothesis with sethood antecedent. (Revised by BJ, 27-Apr-2021.) |
Ref | Expression |
---|---|
zfreg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4247 | . . . 4 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
2 | 1 | biimpi 219 | . . 3 ⊢ (𝐴 ≠ ∅ → ∃𝑥 𝑥 ∈ 𝐴) |
3 | 2 | anim2i 619 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → (𝐴 ∈ 𝑉 ∧ ∃𝑥 𝑥 ∈ 𝐴)) |
4 | zfregcl 9104 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝐴)) | |
5 | 4 | imp 410 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∃𝑥 𝑥 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝐴) |
6 | disj 4347 | . . . 4 ⊢ ((𝑥 ∩ 𝐴) = ∅ ↔ ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝐴) | |
7 | 6 | rexbii 3175 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅ ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝐴) |
8 | 7 | biimpri 231 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝐴 → ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅) |
9 | 3, 5, 8 | 3syl 18 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1538 ∃wex 1781 ∈ wcel 2111 ≠ wne 2951 ∀wral 3070 ∃wrex 3071 ∩ cin 3859 ∅c0 4227 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-12 2175 ax-ext 2729 ax-reg 9102 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-ne 2952 df-ral 3075 df-rex 3076 df-dif 3863 df-in 3867 df-nul 4228 |
This theorem is referenced by: zfregfr 9114 en3lp 9123 inf3lem3 9139 bj-restreg 34829 setindtr 40383 |
Copyright terms: Public domain | W3C validator |