| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zfregclOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of zfregcl 9475 as of 31-Dec-2025. (Contributed by NM, 5-Aug-1994.) Replace sethood hypothesis with sethood antecedent. (Revised by BJ, 27-Apr-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| zfregclOLD | ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2818 | . . . 4 ⊢ (𝑧 = 𝐴 → (𝑥 ∈ 𝑧 ↔ 𝑥 ∈ 𝐴)) | |
| 2 | 1 | exbidv 1922 | . . 3 ⊢ (𝑧 = 𝐴 → (∃𝑥 𝑥 ∈ 𝑧 ↔ ∃𝑥 𝑥 ∈ 𝐴)) |
| 3 | eleq2 2818 | . . . . . 6 ⊢ (𝑧 = 𝐴 → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝐴)) | |
| 4 | 3 | notbid 318 | . . . . 5 ⊢ (𝑧 = 𝐴 → (¬ 𝑦 ∈ 𝑧 ↔ ¬ 𝑦 ∈ 𝐴)) |
| 5 | 4 | ralbidv 3153 | . . . 4 ⊢ (𝑧 = 𝐴 → (∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑧 ↔ ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝐴)) |
| 6 | 5 | rexeqbi1dv 3303 | . . 3 ⊢ (𝑧 = 𝐴 → (∃𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑧 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝐴)) |
| 7 | 2, 6 | imbi12d 344 | . 2 ⊢ (𝑧 = 𝐴 → ((∃𝑥 𝑥 ∈ 𝑧 → ∃𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑧) ↔ (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝐴))) |
| 8 | nfre1 3255 | . . 3 ⊢ Ⅎ𝑥∃𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑧 | |
| 9 | axreg2 9474 | . . . 4 ⊢ (𝑥 ∈ 𝑧 → ∃𝑥(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ 𝑧))) | |
| 10 | df-ral 3046 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑧 ↔ ∀𝑦(𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ 𝑧)) | |
| 11 | 10 | rexbii 3077 | . . . . 5 ⊢ (∃𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑧 ↔ ∃𝑥 ∈ 𝑧 ∀𝑦(𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ 𝑧)) |
| 12 | df-rex 3055 | . . . . 5 ⊢ (∃𝑥 ∈ 𝑧 ∀𝑦(𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ 𝑧) ↔ ∃𝑥(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ 𝑧))) | |
| 13 | 11, 12 | bitr2i 276 | . . . 4 ⊢ (∃𝑥(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ 𝑧)) ↔ ∃𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑧) |
| 14 | 9, 13 | sylib 218 | . . 3 ⊢ (𝑥 ∈ 𝑧 → ∃𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑧) |
| 15 | 8, 14 | exlimi 2219 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝑧 → ∃𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑧) |
| 16 | 7, 15 | vtoclg 3507 | 1 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1539 = wceq 1541 ∃wex 1780 ∈ wcel 2110 ∀wral 3045 ∃wrex 3054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-12 2179 ax-ext 2702 ax-reg 9473 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |