Step | Hyp | Ref
| Expression |
1 | | opelxp 4812 |
. . . . 5
⊢ (〈x, y〉 ∈ ( NC × NC ) ↔ (x ∈ NC ∧ y ∈ NC
)) |
2 | | opelco 4885 |
. . . . . . 7
⊢ (〈x, y〉 ∈ ( FullFun
↑c ∘ ◡(2nd ↾ (◡1st “
{2c}))) ↔ ∃t(x◡(2nd ↾ (◡1st “
{2c}))t ∧ t FullFun ↑c y)) |
3 | | brcnv 4893 |
. . . . . . . . . 10
⊢ (x◡(2nd ↾ (◡1st “
{2c}))t ↔ t(2nd ↾ (◡1st “
{2c}))x) |
4 | | brres 4950 |
. . . . . . . . . . 11
⊢ (t(2nd ↾ (◡1st “
{2c}))x ↔ (t2nd x ∧ t ∈ (◡1st “
{2c}))) |
5 | | ancom 437 |
. . . . . . . . . . 11
⊢ ((t2nd x ∧ t ∈ (◡1st “
{2c})) ↔ (t ∈ (◡1st “
{2c}) ∧ t2nd x)) |
6 | | eliniseg 5021 |
. . . . . . . . . . . 12
⊢ (t ∈ (◡1st “
{2c}) ↔ t1st
2c) |
7 | 6 | anbi1i 676 |
. . . . . . . . . . 11
⊢ ((t ∈ (◡1st “
{2c}) ∧ t2nd x) ↔ (t1st 2c ∧ t2nd x)) |
8 | 4, 5, 7 | 3bitri 262 |
. . . . . . . . . 10
⊢ (t(2nd ↾ (◡1st “
{2c}))x ↔ (t1st 2c ∧ t2nd x)) |
9 | | 2nc 6169 |
. . . . . . . . . . . 12
⊢
2c ∈ NC |
10 | 9 | elexi 2869 |
. . . . . . . . . . 11
⊢
2c ∈
V |
11 | | vex 2863 |
. . . . . . . . . . 11
⊢ x ∈
V |
12 | 10, 11 | op1st2nd 5791 |
. . . . . . . . . 10
⊢ ((t1st 2c ∧ t2nd x) ↔ t =
〈2c, x〉) |
13 | 3, 8, 12 | 3bitri 262 |
. . . . . . . . 9
⊢ (x◡(2nd ↾ (◡1st “
{2c}))t ↔ t = 〈2c, x〉) |
14 | 13 | anbi1i 676 |
. . . . . . . 8
⊢ ((x◡(2nd ↾ (◡1st “
{2c}))t ∧ t FullFun ↑c y) ↔ (t =
〈2c, x〉 ∧ t FullFun ↑c y)) |
15 | 14 | exbii 1582 |
. . . . . . 7
⊢ (∃t(x◡(2nd ↾ (◡1st “
{2c}))t ∧ t FullFun ↑c y) ↔ ∃t(t = 〈2c, x〉 ∧ t FullFun ↑c y)) |
16 | 2, 15 | bitri 240 |
. . . . . 6
⊢ (〈x, y〉 ∈ ( FullFun
↑c ∘ ◡(2nd ↾ (◡1st “
{2c}))) ↔ ∃t(t = 〈2c, x〉 ∧ t FullFun ↑c y)) |
17 | 10, 11 | opex 4589 |
. . . . . . 7
⊢ 〈2c, x〉 ∈ V |
18 | | breq1 4643 |
. . . . . . 7
⊢ (t = 〈2c, x〉 →
(t FullFun
↑c y ↔ 〈2c, x〉 FullFun ↑c y)) |
19 | 17, 18 | ceqsexv 2895 |
. . . . . 6
⊢ (∃t(t = 〈2c, x〉 ∧ t FullFun ↑c y) ↔ 〈2c, x〉 FullFun ↑c y) |
20 | 10, 11 | brfullfunop 5868 |
. . . . . . 7
⊢ (〈2c, x〉 FullFun ↑c y ↔ (2c
↑c x) = y) |
21 | | eqcom 2355 |
. . . . . . 7
⊢
((2c ↑c x) = y ↔
y = (2c
↑c x)) |
22 | 20, 21 | bitri 240 |
. . . . . 6
⊢ (〈2c, x〉 FullFun ↑c y ↔ y =
(2c ↑c x)) |
23 | 16, 19, 22 | 3bitri 262 |
. . . . 5
⊢ (〈x, y〉 ∈ ( FullFun
↑c ∘ ◡(2nd ↾ (◡1st “
{2c}))) ↔ y =
(2c ↑c x)) |
24 | 1, 23 | anbi12i 678 |
. . . 4
⊢ ((〈x, y〉 ∈ ( NC × NC ) ∧ 〈x, y〉 ∈ ( FullFun
↑c ∘ ◡(2nd ↾ (◡1st “
{2c})))) ↔ ((x ∈ NC ∧ y ∈ NC ) ∧ y =
(2c ↑c x))) |
25 | | elin 3220 |
. . . 4
⊢ (〈x, y〉 ∈ (( NC × NC ) ∩ ( FullFun
↑c ∘ ◡(2nd ↾ (◡1st “
{2c})))) ↔ (〈x, y〉 ∈ ( NC × NC ) ∧ 〈x, y〉 ∈ ( FullFun ↑c ∘ ◡(2nd ↾ (◡1st “
{2c}))))) |
26 | | df-3an 936 |
. . . 4
⊢ ((x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x)) ↔ ((x ∈ NC ∧ y ∈ NC ) ∧ y = (2c ↑c
x))) |
27 | 24, 25, 26 | 3bitr4i 268 |
. . 3
⊢ (〈x, y〉 ∈ (( NC × NC ) ∩ ( FullFun
↑c ∘ ◡(2nd ↾ (◡1st “
{2c})))) ↔ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))) |
28 | 27 | opabbi2i 4867 |
. 2
⊢ (( NC × NC ) ∩ (
FullFun ↑c ∘ ◡(2nd ↾ (◡1st “
{2c})))) = {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c
x))} |
29 | | ncsex 6112 |
. . . 4
⊢ NC ∈
V |
30 | 29, 29 | xpex 5116 |
. . 3
⊢ ( NC × NC ) ∈ V |
31 | | ceex 6175 |
. . . . 5
⊢
↑c ∈
V |
32 | 31 | fullfunex 5861 |
. . . 4
⊢ FullFun ↑c ∈ V |
33 | | 2ndex 5113 |
. . . . . 6
⊢ 2nd
∈ V |
34 | | 1stex 4740 |
. . . . . . . 8
⊢ 1st
∈ V |
35 | 34 | cnvex 5103 |
. . . . . . 7
⊢ ◡1st ∈ V |
36 | | snex 4112 |
. . . . . . 7
⊢
{2c} ∈
V |
37 | 35, 36 | imaex 4748 |
. . . . . 6
⊢ (◡1st “
{2c}) ∈ V |
38 | 33, 37 | resex 5118 |
. . . . 5
⊢ (2nd
↾ (◡1st “
{2c})) ∈ V |
39 | 38 | cnvex 5103 |
. . . 4
⊢ ◡(2nd ↾ (◡1st “
{2c})) ∈ V |
40 | 32, 39 | coex 4751 |
. . 3
⊢ ( FullFun ↑c ∘ ◡(2nd ↾ (◡1st “
{2c}))) ∈
V |
41 | 30, 40 | inex 4106 |
. 2
⊢ (( NC × NC ) ∩ (
FullFun ↑c ∘ ◡(2nd ↾ (◡1st “
{2c})))) ∈
V |
42 | 28, 41 | eqeltrri 2424 |
1
⊢ {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y =
(2c ↑c x))} ∈
V |