NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  spacvallem1 GIF version

Theorem spacvallem1 6282
Description: Lemma for spacval 6283. Set up stratification for the recursive relationship. (Contributed by SF, 6-Mar-2015.)
Assertion
Ref Expression
spacvallem1 {x, y (x NC y NC y = (2cc x))} V
Distinct variable group:   x,y

Proof of Theorem spacvallem1
Dummy variable t is distinct from all other variables.
StepHypRef Expression
1 opelxp 4812 . . . . 5 (x, y ( NC × NC ) ↔ (x NC y NC ))
2 opelco 4885 . . . . . . 7 (x, y ( FullFunc (2nd (1st “ {2c}))) ↔ t(x(2nd (1st “ {2c}))t t FullFunc y))
3 brcnv 4893 . . . . . . . . . 10 (x(2nd (1st “ {2c}))tt(2nd (1st “ {2c}))x)
4 brres 4950 . . . . . . . . . . 11 (t(2nd (1st “ {2c}))x ↔ (t2nd x t (1st “ {2c})))
5 ancom 437 . . . . . . . . . . 11 ((t2nd x t (1st “ {2c})) ↔ (t (1st “ {2c}) t2nd x))
6 eliniseg 5021 . . . . . . . . . . . 12 (t (1st “ {2c}) ↔ t1st 2c)
76anbi1i 676 . . . . . . . . . . 11 ((t (1st “ {2c}) t2nd x) ↔ (t1st 2c t2nd x))
84, 5, 73bitri 262 . . . . . . . . . 10 (t(2nd (1st “ {2c}))x ↔ (t1st 2c t2nd x))
9 2nc 6169 . . . . . . . . . . . 12 2c NC
109elexi 2869 . . . . . . . . . . 11 2c V
11 vex 2863 . . . . . . . . . . 11 x V
1210, 11op1st2nd 5791 . . . . . . . . . 10 ((t1st 2c t2nd x) ↔ t = 2c, x)
133, 8, 123bitri 262 . . . . . . . . 9 (x(2nd (1st “ {2c}))tt = 2c, x)
1413anbi1i 676 . . . . . . . 8 ((x(2nd (1st “ {2c}))t t FullFunc y) ↔ (t = 2c, x t FullFunc y))
1514exbii 1582 . . . . . . 7 (t(x(2nd (1st “ {2c}))t t FullFunc y) ↔ t(t = 2c, x t FullFunc y))
162, 15bitri 240 . . . . . 6 (x, y ( FullFunc (2nd (1st “ {2c}))) ↔ t(t = 2c, x t FullFunc y))
1710, 11opex 4589 . . . . . . 7 2c, x V
18 breq1 4643 . . . . . . 7 (t = 2c, x → (t FullFunc y2c, x FullFunc y))
1917, 18ceqsexv 2895 . . . . . 6 (t(t = 2c, x t FullFunc y) ↔ 2c, x FullFunc y)
2010, 11brfullfunop 5868 . . . . . . 7 (2c, x FullFunc y ↔ (2cc x) = y)
21 eqcom 2355 . . . . . . 7 ((2cc x) = yy = (2cc x))
2220, 21bitri 240 . . . . . 6 (2c, x FullFunc yy = (2cc x))
2316, 19, 223bitri 262 . . . . 5 (x, y ( FullFunc (2nd (1st “ {2c}))) ↔ y = (2cc x))
241, 23anbi12i 678 . . . 4 ((x, y ( NC × NC ) x, y ( FullFunc (2nd (1st “ {2c})))) ↔ ((x NC y NC ) y = (2cc x)))
25 elin 3220 . . . 4 (x, y (( NC × NC ) ∩ ( FullFunc (2nd (1st “ {2c})))) ↔ (x, y ( NC × NC ) x, y ( FullFunc (2nd (1st “ {2c})))))
26 df-3an 936 . . . 4 ((x NC y NC y = (2cc x)) ↔ ((x NC y NC ) y = (2cc x)))
2724, 25, 263bitr4i 268 . . 3 (x, y (( NC × NC ) ∩ ( FullFunc (2nd (1st “ {2c})))) ↔ (x NC y NC y = (2cc x)))
2827opabbi2i 4867 . 2 (( NC × NC ) ∩ ( FullFunc (2nd (1st “ {2c})))) = {x, y (x NC y NC y = (2cc x))}
29 ncsex 6112 . . . 4 NC V
3029, 29xpex 5116 . . 3 ( NC × NC ) V
31 ceex 6175 . . . . 5 c V
3231fullfunex 5861 . . . 4 FullFunc V
33 2ndex 5113 . . . . . 6 2nd V
34 1stex 4740 . . . . . . . 8 1st V
3534cnvex 5103 . . . . . . 7 1st V
36 snex 4112 . . . . . . 7 {2c} V
3735, 36imaex 4748 . . . . . 6 (1st “ {2c}) V
3833, 37resex 5118 . . . . 5 (2nd (1st “ {2c})) V
3938cnvex 5103 . . . 4 (2nd (1st “ {2c})) V
4032, 39coex 4751 . . 3 ( FullFunc (2nd (1st “ {2c}))) V
4130, 40inex 4106 . 2 (( NC × NC ) ∩ ( FullFunc (2nd (1st “ {2c})))) V
4228, 41eqeltrri 2424 1 {x, y (x NC y NC y = (2cc x))} V
Colors of variables: wff setvar class
Syntax hints:   wa 358   w3a 934  wex 1541   = wceq 1642   wcel 1710  Vcvv 2860  cin 3209  {csn 3738  cop 4562  {copab 4623   class class class wbr 4640  1st c1st 4718   ccom 4722  cima 4723   × cxp 4771  ccnv 4772   cres 4775  2nd c2nd 4784  (class class class)co 5526   FullFun cfullfun 5768   NC cncs 6089  2cc2c 6095  c cce 6097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795  df-fv 4796  df-2nd 4798  df-ov 5527  df-oprab 5529  df-mpt 5653  df-mpt2 5655  df-txp 5737  df-ins2 5751  df-ins3 5753  df-image 5755  df-ins4 5757  df-si3 5759  df-funs 5761  df-fns 5763  df-pw1fn 5767  df-fullfun 5769  df-trans 5900  df-sym 5909  df-er 5910  df-ec 5948  df-qs 5952  df-map 6002  df-en 6030  df-ncs 6099  df-nc 6102  df-2c 6105  df-ce 6107
This theorem is referenced by:  spacval  6283  fnspac  6284  spacssnc  6285  spacind  6288  nchoicelem3  6292  nchoicelem11  6300  nchoicelem16  6305  nchoicelem18  6307
  Copyright terms: Public domain W3C validator