New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > abexv | GIF version |
Description: When x does not occur in φ, {x ∣ φ} is a set. (Contributed by SF, 17-Jan-2015.) |
Ref | Expression |
---|---|
abexv | ⊢ {x ∣ φ} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abvor0 3568 | . 2 ⊢ ({x ∣ φ} = V ∨ {x ∣ φ} = ∅) | |
2 | vvex 4110 | . . . 4 ⊢ V ∈ V | |
3 | eleq1 2413 | . . . 4 ⊢ ({x ∣ φ} = V → ({x ∣ φ} ∈ V ↔ V ∈ V)) | |
4 | 2, 3 | mpbiri 224 | . . 3 ⊢ ({x ∣ φ} = V → {x ∣ φ} ∈ V) |
5 | 0ex 4111 | . . . 4 ⊢ ∅ ∈ V | |
6 | eleq1 2413 | . . . 4 ⊢ ({x ∣ φ} = ∅ → ({x ∣ φ} ∈ V ↔ ∅ ∈ V)) | |
7 | 5, 6 | mpbiri 224 | . . 3 ⊢ ({x ∣ φ} = ∅ → {x ∣ φ} ∈ V) |
8 | 4, 7 | jaoi 368 | . 2 ⊢ (({x ∣ φ} = V ∨ {x ∣ φ} = ∅) → {x ∣ φ} ∈ V) |
9 | 1, 8 | ax-mp 5 | 1 ⊢ {x ∣ φ} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 357 = wceq 1642 ∈ wcel 1710 {cab 2339 Vcvv 2860 ∅c0 3551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 |
This theorem is referenced by: nncaddccl 4420 preaddccan2lem1 4455 ltfintrilem1 4466 leconnnc 6219 addccan2nclem2 6265 nchoicelem16 6305 |
Copyright terms: Public domain | W3C validator |