Step | Hyp | Ref
| Expression |
1 | | snex 4112 |
. . . . 5
⊢ {{{x}}} ∈
V |
2 | | opkeq1 4060 |
. . . . . 6
⊢ (t = {{{x}}}
→ ⟪t, ⟪A, B⟫⟫ = ⟪{{{x}}}, ⟪A,
B⟫⟫) |
3 | 2 | eleq1d 2419 |
. . . . 5
⊢ (t = {{{x}}}
→ (⟪t, ⟪A, B⟫⟫ ∈ ( Ins3k Sk ∩ Ins2k Sk ) ↔ ⟪{{{x}}}, ⟪A,
B⟫⟫ ∈ ( Ins3k Sk ∩ Ins2k Sk ))) |
4 | 1, 3 | ceqsexv 2895 |
. . . 4
⊢ (∃t(t = {{{x}}}
∧ ⟪t, ⟪A,
B⟫⟫ ∈ ( Ins3k Sk ∩ Ins2k Sk )) ↔ ⟪{{{x}}}, ⟪A,
B⟫⟫ ∈ ( Ins3k Sk ∩ Ins2k Sk )) |
5 | | elin 3220 |
. . . . 5
⊢
(⟪{{{x}}}, ⟪A, B⟫⟫ ∈ ( Ins3k Sk ∩ Ins2k Sk ) ↔ (⟪{{{x}}}, ⟪A,
B⟫⟫ ∈ Ins3k Sk ∧
⟪{{{x}}}, ⟪A, B⟫⟫ ∈ Ins2k Sk )) |
6 | | snex 4112 |
. . . . . . . 8
⊢ {x} ∈
V |
7 | | ndisjrelk.1 |
. . . . . . . 8
⊢ A ∈
V |
8 | | ndisjrelk.2 |
. . . . . . . 8
⊢ B ∈
V |
9 | 6, 7, 8 | otkelins3k 4257 |
. . . . . . 7
⊢
(⟪{{{x}}}, ⟪A, B⟫⟫ ∈ Ins3k Sk ↔ ⟪{x}, A⟫
∈ Sk ) |
10 | | vex 2863 |
. . . . . . . 8
⊢ x ∈
V |
11 | 10, 7 | elssetk 4271 |
. . . . . . 7
⊢ (⟪{x}, A⟫
∈ Sk ↔ x ∈ A) |
12 | 9, 11 | bitri 240 |
. . . . . 6
⊢
(⟪{{{x}}}, ⟪A, B⟫⟫ ∈ Ins3k Sk ↔ x ∈ A) |
13 | 6, 7, 8 | otkelins2k 4256 |
. . . . . . 7
⊢
(⟪{{{x}}}, ⟪A, B⟫⟫ ∈ Ins2k Sk ↔ ⟪{x}, B⟫
∈ Sk ) |
14 | 10, 8 | elssetk 4271 |
. . . . . . 7
⊢ (⟪{x}, B⟫
∈ Sk ↔ x ∈ B) |
15 | 13, 14 | bitri 240 |
. . . . . 6
⊢
(⟪{{{x}}}, ⟪A, B⟫⟫ ∈ Ins2k Sk ↔ x ∈ B) |
16 | 12, 15 | anbi12i 678 |
. . . . 5
⊢
((⟪{{{x}}}, ⟪A, B⟫⟫ ∈ Ins3k Sk ∧
⟪{{{x}}}, ⟪A, B⟫⟫ ∈ Ins2k Sk ) ↔ (x ∈ A ∧ x ∈ B)) |
17 | 5, 16 | bitri 240 |
. . . 4
⊢
(⟪{{{x}}}, ⟪A, B⟫⟫ ∈ ( Ins3k Sk ∩ Ins2k Sk ) ↔ (x ∈ A ∧ x ∈ B)) |
18 | 4, 17 | bitri 240 |
. . 3
⊢ (∃t(t = {{{x}}}
∧ ⟪t, ⟪A,
B⟫⟫ ∈ ( Ins3k Sk ∩ Ins2k Sk )) ↔ (x ∈ A ∧ x ∈ B)) |
19 | 18 | exbii 1582 |
. 2
⊢ (∃x∃t(t = {{{x}}}
∧ ⟪t, ⟪A,
B⟫⟫ ∈ ( Ins3k Sk ∩ Ins2k Sk )) ↔ ∃x(x ∈ A ∧ x ∈ B)) |
20 | | opkex 4114 |
. . . 4
⊢ ⟪A, B⟫
∈ V |
21 | 20 | elimak 4260 |
. . 3
⊢ (⟪A, B⟫
∈ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ↔ ∃t ∈ ℘1
℘11c⟪t, ⟪A,
B⟫⟫ ∈ ( Ins3k Sk ∩ Ins2k Sk )) |
22 | | elpw121c 4149 |
. . . . . . 7
⊢ (t ∈ ℘1℘11c ↔ ∃x t = {{{x}}}) |
23 | 22 | anbi1i 676 |
. . . . . 6
⊢ ((t ∈ ℘1℘11c ∧ ⟪t,
⟪A, B⟫⟫ ∈ ( Ins3k Sk ∩ Ins2k Sk )) ↔ (∃x t = {{{x}}}
∧ ⟪t, ⟪A,
B⟫⟫ ∈ ( Ins3k Sk ∩ Ins2k Sk ))) |
24 | | 19.41v 1901 |
. . . . . 6
⊢ (∃x(t = {{{x}}}
∧ ⟪t, ⟪A,
B⟫⟫ ∈ ( Ins3k Sk ∩ Ins2k Sk )) ↔ (∃x t = {{{x}}}
∧ ⟪t, ⟪A,
B⟫⟫ ∈ ( Ins3k Sk ∩ Ins2k Sk ))) |
25 | 23, 24 | bitr4i 243 |
. . . . 5
⊢ ((t ∈ ℘1℘11c ∧ ⟪t,
⟪A, B⟫⟫ ∈ ( Ins3k Sk ∩ Ins2k Sk )) ↔ ∃x(t = {{{x}}}
∧ ⟪t, ⟪A,
B⟫⟫ ∈ ( Ins3k Sk ∩ Ins2k Sk ))) |
26 | 25 | exbii 1582 |
. . . 4
⊢ (∃t(t ∈ ℘1℘11c ∧ ⟪t,
⟪A, B⟫⟫ ∈ ( Ins3k Sk ∩ Ins2k Sk )) ↔ ∃t∃x(t = {{{x}}}
∧ ⟪t, ⟪A,
B⟫⟫ ∈ ( Ins3k Sk ∩ Ins2k Sk ))) |
27 | | df-rex 2621 |
. . . 4
⊢ (∃t ∈ ℘1
℘11c⟪t, ⟪A,
B⟫⟫ ∈ ( Ins3k Sk ∩ Ins2k Sk ) ↔ ∃t(t ∈ ℘1℘11c ∧ ⟪t,
⟪A, B⟫⟫ ∈ ( Ins3k Sk ∩ Ins2k Sk ))) |
28 | | excom 1741 |
. . . 4
⊢ (∃x∃t(t = {{{x}}}
∧ ⟪t, ⟪A,
B⟫⟫ ∈ ( Ins3k Sk ∩ Ins2k Sk )) ↔ ∃t∃x(t = {{{x}}}
∧ ⟪t, ⟪A,
B⟫⟫ ∈ ( Ins3k Sk ∩ Ins2k Sk ))) |
29 | 26, 27, 28 | 3bitr4i 268 |
. . 3
⊢ (∃t ∈ ℘1
℘11c⟪t, ⟪A,
B⟫⟫ ∈ ( Ins3k Sk ∩ Ins2k Sk ) ↔ ∃x∃t(t = {{{x}}}
∧ ⟪t, ⟪A,
B⟫⟫ ∈ ( Ins3k Sk ∩ Ins2k Sk ))) |
30 | 21, 29 | bitri 240 |
. 2
⊢ (⟪A, B⟫
∈ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ↔ ∃x∃t(t = {{{x}}}
∧ ⟪t, ⟪A,
B⟫⟫ ∈ ( Ins3k Sk ∩ Ins2k Sk ))) |
31 | | n0 3560 |
. . 3
⊢ ((A ∩ B) ≠
∅ ↔ ∃x x ∈ (A ∩ B)) |
32 | | elin 3220 |
. . . 4
⊢ (x ∈ (A ∩ B)
↔ (x ∈ A ∧ x ∈ B)) |
33 | 32 | exbii 1582 |
. . 3
⊢ (∃x x ∈ (A ∩ B)
↔ ∃x(x ∈ A ∧ x ∈ B)) |
34 | 31, 33 | bitri 240 |
. 2
⊢ ((A ∩ B) ≠
∅ ↔ ∃x(x ∈ A ∧ x ∈ B)) |
35 | 19, 30, 34 | 3bitr4i 268 |
1
⊢ (⟪A, B⟫
∈ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ↔
(A ∩ B) ≠ ∅) |