New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 0ex | GIF version |
Description: The empty class exists. (Contributed by SF, 12-Jan-2015.) |
Ref | Expression |
---|---|
0ex | ⊢ ∅ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | complV 4071 | . 2 ⊢ ∼ V = ∅ | |
2 | vvex 4110 | . . 3 ⊢ V ∈ V | |
3 | 2 | complex 4105 | . 2 ⊢ ∼ V ∈ V |
4 | 1, 3 | eqeltrri 2424 | 1 ⊢ ∅ ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1710 Vcvv 2860 ∼ ccompl 3206 ∅c0 3551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 |
This theorem is referenced by: snex 4112 setswithex 4323 abexv 4325 iotaex 4357 0cnsuc 4402 addcid1 4406 el0c 4422 preaddccan2lem1 4455 tfinex 4486 0ceven 4506 nnadjoin 4521 nnpweq 4524 sfin01 4529 tfinnn 4535 vfin1cltv 4548 xpexr 5110 fnfullfun 5859 fvfullfun 5865 clos10 5888 po0 5940 connex0 5941 map0e 6024 map0b 6025 map0 6026 en0 6043 endisj 6052 enpw 6088 0cnc 6139 muc0 6143 ncaddccl 6145 1p1e2c 6156 2p1e3c 6157 tcdi 6165 tc1c 6166 ce0nnul 6178 ce0addcnnul 6180 ce0nn 6181 ce0nulnc 6185 ce0 6191 ce2 6193 lec0cg 6199 0lt1c 6259 |
Copyright terms: Public domain | W3C validator |