New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 0ex | GIF version |
Description: The empty class exists. (Contributed by SF, 12-Jan-2015.) |
Ref | Expression |
---|---|
0ex | ⊢ ∅ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | complV 4070 | . 2 ⊢ ∼ V = ∅ | |
2 | vvex 4109 | . . 3 ⊢ V ∈ V | |
3 | 2 | complex 4104 | . 2 ⊢ ∼ V ∈ V |
4 | 1, 3 | eqeltrri 2424 | 1 ⊢ ∅ ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1710 Vcvv 2859 ∼ ccompl 3205 ∅c0 3550 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-ss 3259 df-nul 3551 |
This theorem is referenced by: snex 4111 setswithex 4322 abexv 4324 iotaex 4356 0cnsuc 4401 addcid1 4405 el0c 4421 preaddccan2lem1 4454 tfinex 4485 0ceven 4505 nnadjoin 4520 nnpweq 4523 sfin01 4528 tfinnn 4534 vfin1cltv 4547 xpexr 5109 fnfullfun 5858 fvfullfun 5864 clos10 5887 po0 5939 connex0 5940 map0e 6023 map0b 6024 map0 6025 en0 6042 endisj 6051 enpw 6087 0cnc 6138 muc0 6142 ncaddccl 6144 1p1e2c 6155 2p1e3c 6156 tcdi 6164 tc1c 6165 ce0nnul 6177 ce0addcnnul 6179 ce0nn 6180 ce0nulnc 6184 ce0 6190 ce2 6192 lec0cg 6198 0lt1c 6258 |
Copyright terms: Public domain | W3C validator |