| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > intexg | GIF version | ||
| Description: The intersection of a set is a set. (Contributed by SF, 14-Jan-2015.) |
| Ref | Expression |
|---|---|
| intexg | ⊢ (A ∈ V → ∩A ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfint3 4319 | . 2 ⊢ ∩A = ∼ ⋃1(◡k ∼ Sk “k A) | |
| 2 | ssetkex 4295 | . . . . . 6 ⊢ Sk ∈ V | |
| 3 | 2 | complex 4105 | . . . . 5 ⊢ ∼ Sk ∈ V |
| 4 | 3 | cnvkex 4288 | . . . 4 ⊢ ◡k ∼ Sk ∈ V |
| 5 | imakexg 4300 | . . . 4 ⊢ ((◡k ∼ Sk ∈ V ∧ A ∈ V) → (◡k ∼ Sk “k A) ∈ V) | |
| 6 | 4, 5 | mpan 651 | . . 3 ⊢ (A ∈ V → (◡k ∼ Sk “k A) ∈ V) |
| 7 | uni1exg 4293 | . . 3 ⊢ ((◡k ∼ Sk “k A) ∈ V → ⋃1(◡k ∼ Sk “k A) ∈ V) | |
| 8 | complexg 4100 | . . 3 ⊢ (⋃1(◡k ∼ Sk “k A) ∈ V → ∼ ⋃1(◡k ∼ Sk “k A) ∈ V) | |
| 9 | 6, 7, 8 | 3syl 18 | . 2 ⊢ (A ∈ V → ∼ ⋃1(◡k ∼ Sk “k A) ∈ V) |
| 10 | 1, 9 | syl5eqel 2437 | 1 ⊢ (A ∈ V → ∩A ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 1710 Vcvv 2860 ∼ ccompl 3206 ∩cint 3927 ⋃1cuni1 4134 ◡kccnvk 4176 “k cimak 4180 Sk cssetk 4184 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-typlower 4087 ax-sn 4088 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-imak 4190 df-p6 4192 df-sik 4193 df-ssetk 4194 |
| This theorem is referenced by: intex 4321 |
| Copyright terms: Public domain | W3C validator |