New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbcbrg | GIF version |
Description: Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
sbcbrg | ⊢ (A ∈ D → ([̣A / x]̣BRC ↔ [A / x]B[A / x]R[A / x]C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq2 3050 | . 2 ⊢ (y = A → ([y / x]BRC ↔ [̣A / x]̣BRC)) | |
2 | csbeq1 3140 | . . 3 ⊢ (y = A → [y / x]B = [A / x]B) | |
3 | csbeq1 3140 | . . 3 ⊢ (y = A → [y / x]R = [A / x]R) | |
4 | csbeq1 3140 | . . 3 ⊢ (y = A → [y / x]C = [A / x]C) | |
5 | 2, 3, 4 | breq123d 4654 | . 2 ⊢ (y = A → ([y / x]B[y / x]R[y / x]C ↔ [A / x]B[A / x]R[A / x]C)) |
6 | nfcsb1v 3169 | . . . 4 ⊢ Ⅎx[y / x]B | |
7 | nfcsb1v 3169 | . . . 4 ⊢ Ⅎx[y / x]R | |
8 | nfcsb1v 3169 | . . . 4 ⊢ Ⅎx[y / x]C | |
9 | 6, 7, 8 | nfbr 4684 | . . 3 ⊢ Ⅎx[y / x]B[y / x]R[y / x]C |
10 | csbeq1a 3145 | . . . 4 ⊢ (x = y → B = [y / x]B) | |
11 | csbeq1a 3145 | . . . 4 ⊢ (x = y → R = [y / x]R) | |
12 | csbeq1a 3145 | . . . 4 ⊢ (x = y → C = [y / x]C) | |
13 | 10, 11, 12 | breq123d 4654 | . . 3 ⊢ (x = y → (BRC ↔ [y / x]B[y / x]R[y / x]C)) |
14 | 9, 13 | sbie 2038 | . 2 ⊢ ([y / x]BRC ↔ [y / x]B[y / x]R[y / x]C) |
15 | 1, 5, 14 | vtoclbg 2916 | 1 ⊢ (A ∈ D → ([̣A / x]̣BRC ↔ [A / x]B[A / x]R[A / x]C)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 = wceq 1642 [wsb 1648 ∈ wcel 1710 [̣wsbc 3047 [csb 3137 class class class wbr 4640 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-csb 3138 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-addc 4379 df-nnc 4380 df-phi 4566 df-op 4567 df-br 4641 |
This theorem is referenced by: sbcbr12g 4687 csbfv12g 5337 |
Copyright terms: Public domain | W3C validator |