NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ffoss GIF version

Theorem ffoss 5315
Description: Relationship between a mapping and an onto mapping. Figure 38 of [Enderton] p. 145. (Contributed by set.mm contributors, 10-May-1998.)
Hypothesis
Ref Expression
f11o.1 F V
Assertion
Ref Expression
ffoss (F:A–→Bx(F:Aontox x B))
Distinct variable groups:   x,F   x,A   x,B

Proof of Theorem ffoss
StepHypRef Expression
1 df-f 4792 . . . 4 (F:A–→B ↔ (F Fn A ran F B))
2 dffn4 5276 . . . . 5 (F Fn AF:Aonto→ran F)
32anbi1i 676 . . . 4 ((F Fn A ran F B) ↔ (F:Aonto→ran F ran F B))
41, 3bitri 240 . . 3 (F:A–→B ↔ (F:Aonto→ran F ran F B))
5 f11o.1 . . . . 5 F V
65rnex 5108 . . . 4 ran F V
7 foeq3 5268 . . . . 5 (x = ran F → (F:AontoxF:Aonto→ran F))
8 sseq1 3293 . . . . 5 (x = ran F → (x B ↔ ran F B))
97, 8anbi12d 691 . . . 4 (x = ran F → ((F:Aontox x B) ↔ (F:Aonto→ran F ran F B)))
106, 9spcev 2947 . . 3 ((F:Aonto→ran F ran F B) → x(F:Aontox x B))
114, 10sylbi 187 . 2 (F:A–→Bx(F:Aontox x B))
12 fof 5270 . . . 4 (F:AontoxF:A–→x)
13 fss 5231 . . . 4 ((F:A–→x x B) → F:A–→B)
1412, 13sylan 457 . . 3 ((F:Aontox x B) → F:A–→B)
1514exlimiv 1634 . 2 (x(F:Aontox x B) → F:A–→B)
1611, 15impbii 180 1 (F:A–→Bx(F:Aontox x B))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358  wex 1541   = wceq 1642   wcel 1710  Vcvv 2860   wss 3258  ran crn 4774   Fn wfn 4777  –→wf 4778  ontowfo 4780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-addc 4379  df-nnc 4380  df-phi 4566  df-op 4567  df-br 4641  df-ima 4728  df-rn 4787  df-f 4792  df-fo 4794
This theorem is referenced by:  f11o  5316
  Copyright terms: Public domain W3C validator