Step | Hyp | Ref
| Expression |
1 | | df-sn 3742 |
. . . . . 6
⊢
{0c} = {n ∣ n =
0c} |
2 | | vex 2863 |
. . . . . . . . 9
⊢ n ∈
V |
3 | 2 | elimak 4260 |
. . . . . . . 8
⊢ (n ∈
(Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c)
“k Nn ) ↔ ∃x ∈ Nn ⟪x, n⟫
∈ Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c)) |
4 | | vex 2863 |
. . . . . . . . . . 11
⊢ x ∈
V |
5 | | opkelimagekg 4272 |
. . . . . . . . . . 11
⊢ ((x ∈ V ∧ n ∈ V) → (⟪x, n⟫
∈ Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c) ↔
n = ((( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c)
“k x))) |
6 | 4, 2, 5 | mp2an 653 |
. . . . . . . . . 10
⊢ (⟪x, n⟫
∈ Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c) ↔
n = ((( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c)
“k x)) |
7 | | dfaddc2 4382 |
. . . . . . . . . . 11
⊢ (x +c 1c) = (((
Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c)
“k x) |
8 | 7 | eqeq2i 2363 |
. . . . . . . . . 10
⊢ (n = (x
+c 1c) ↔ n = ((( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c)
“k x)) |
9 | 6, 8 | bitr4i 243 |
. . . . . . . . 9
⊢ (⟪x, n⟫
∈ Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c) ↔
n = (x
+c 1c)) |
10 | 9 | rexbii 2640 |
. . . . . . . 8
⊢ (∃x ∈ Nn ⟪x, n⟫
∈ Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c) ↔ ∃x ∈ Nn n = (x
+c 1c)) |
11 | 3, 10 | bitri 240 |
. . . . . . 7
⊢ (n ∈
(Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c)
“k Nn ) ↔ ∃x ∈ Nn n = (x
+c 1c)) |
12 | 11 | abbi2i 2465 |
. . . . . 6
⊢
(Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c)
“k Nn ) = {n ∣ ∃x ∈ Nn n = (x
+c 1c)} |
13 | 1, 12 | uneq12i 3417 |
. . . . 5
⊢
({0c} ∪ (Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c)
“k Nn )) = ({n ∣ n = 0c} ∪ {n ∣ ∃x ∈ Nn n = (x
+c 1c)}) |
14 | | unab 3522 |
. . . . 5
⊢ ({n ∣ n = 0c} ∪ {n ∣ ∃x ∈ Nn n = (x
+c 1c)}) = {n ∣ (n = 0c
∨ ∃x ∈ Nn n = (x +c
1c))} |
15 | 13, 14 | eqtri 2373 |
. . . 4
⊢
({0c} ∪ (Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c)
“k Nn )) = {n ∣ (n = 0c
∨ ∃x ∈ Nn n = (x +c
1c))} |
16 | | snex 4112 |
. . . . 5
⊢
{0c} ∈
V |
17 | | addcexlem 4383 |
. . . . . . . 8
⊢ ( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c)) ∈ V |
18 | | 1cex 4143 |
. . . . . . . . . 10
⊢
1c ∈
V |
19 | 18 | pw1ex 4304 |
. . . . . . . . 9
⊢ ℘11c ∈ V |
20 | 19 | pw1ex 4304 |
. . . . . . . 8
⊢ ℘1℘11c ∈ V |
21 | 17, 20 | imakex 4301 |
. . . . . . 7
⊢ (( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c) ∈ V |
22 | 21 | imagekex 4313 |
. . . . . 6
⊢
Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c) ∈ V |
23 | | nncex 4397 |
. . . . . 6
⊢ Nn ∈
V |
24 | 22, 23 | imakex 4301 |
. . . . 5
⊢
(Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c)
“k Nn ) ∈ V |
25 | 16, 24 | unex 4107 |
. . . 4
⊢
({0c} ∪ (Imagek(( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c))
“k ℘1℘11c)
“k Nn )) ∈ V |
26 | 15, 25 | eqeltrri 2424 |
. . 3
⊢ {n ∣ (n = 0c
∨ ∃x ∈ Nn n = (x +c 1c))} ∈ V |
27 | | eqeq1 2359 |
. . . 4
⊢ (n = 0c → (n = 0c ↔ 0c
= 0c)) |
28 | | eqeq1 2359 |
. . . . 5
⊢ (n = 0c → (n = (x
+c 1c) ↔ 0c =
(x +c
1c))) |
29 | 28 | rexbidv 2636 |
. . . 4
⊢ (n = 0c → (∃x ∈ Nn n = (x
+c 1c) ↔ ∃x ∈ Nn
0c = (x
+c 1c))) |
30 | 27, 29 | orbi12d 690 |
. . 3
⊢ (n = 0c → ((n = 0c
∨ ∃x ∈ Nn n = (x +c 1c)) ↔
(0c = 0c ∨
∃x ∈ Nn
0c = (x
+c 1c)))) |
31 | | eqeq1 2359 |
. . . 4
⊢ (n = m →
(n = 0c ↔ m = 0c)) |
32 | | eqeq1 2359 |
. . . . 5
⊢ (n = m →
(n = (x
+c 1c) ↔ m = (x
+c 1c))) |
33 | 32 | rexbidv 2636 |
. . . 4
⊢ (n = m →
(∃x
∈ Nn n = (x
+c 1c) ↔ ∃x ∈ Nn m = (x
+c 1c))) |
34 | 31, 33 | orbi12d 690 |
. . 3
⊢ (n = m →
((n = 0c ∨ ∃x ∈ Nn n = (x +c 1c)) ↔
(m = 0c ∨ ∃x ∈ Nn m = (x +c
1c)))) |
35 | | eqeq1 2359 |
. . . 4
⊢ (n = (m
+c 1c) → (n = 0c ↔ (m +c 1c) =
0c)) |
36 | | eqeq1 2359 |
. . . . 5
⊢ (n = (m
+c 1c) → (n = (x
+c 1c) ↔ (m +c 1c) =
(x +c
1c))) |
37 | 36 | rexbidv 2636 |
. . . 4
⊢ (n = (m
+c 1c) → (∃x ∈ Nn n = (x
+c 1c) ↔ ∃x ∈ Nn (m +c 1c) =
(x +c
1c))) |
38 | 35, 37 | orbi12d 690 |
. . 3
⊢ (n = (m
+c 1c) → ((n = 0c
∨ ∃x ∈ Nn n = (x +c 1c)) ↔
((m +c
1c) = 0c ∨
∃x ∈ Nn (m +c 1c) =
(x +c
1c)))) |
39 | | eqeq1 2359 |
. . . 4
⊢ (n = A →
(n = 0c ↔ A = 0c)) |
40 | | eqeq1 2359 |
. . . . 5
⊢ (n = A →
(n = (x
+c 1c) ↔ A = (x
+c 1c))) |
41 | 40 | rexbidv 2636 |
. . . 4
⊢ (n = A →
(∃x
∈ Nn n = (x
+c 1c) ↔ ∃x ∈ Nn A = (x
+c 1c))) |
42 | 39, 41 | orbi12d 690 |
. . 3
⊢ (n = A →
((n = 0c ∨ ∃x ∈ Nn n = (x +c 1c)) ↔
(A = 0c ∨ ∃x ∈ Nn A = (x +c
1c)))) |
43 | | eqid 2353 |
. . . 4
⊢
0c = 0c |
44 | 43 | orci 379 |
. . 3
⊢
(0c = 0c
∨ ∃x ∈ Nn 0c = (x +c
1c)) |
45 | | eqid 2353 |
. . . . . 6
⊢ (m +c 1c) =
(m +c
1c) |
46 | | addceq1 4384 |
. . . . . . . 8
⊢ (x = m →
(x +c
1c) = (m
+c 1c)) |
47 | 46 | eqeq2d 2364 |
. . . . . . 7
⊢ (x = m →
((m +c
1c) = (x
+c 1c) ↔ (m +c 1c) =
(m +c
1c))) |
48 | 47 | rspcev 2956 |
. . . . . 6
⊢ ((m ∈ Nn ∧ (m +c 1c) =
(m +c
1c)) → ∃x ∈ Nn (m
+c 1c) = (x +c
1c)) |
49 | 45, 48 | mpan2 652 |
. . . . 5
⊢ (m ∈ Nn → ∃x ∈ Nn (m
+c 1c) = (x +c
1c)) |
50 | 49 | olcd 382 |
. . . 4
⊢ (m ∈ Nn → ((m
+c 1c) = 0c ∨ ∃x ∈ Nn (m
+c 1c) = (x +c
1c))) |
51 | 50 | a1d 22 |
. . 3
⊢ (m ∈ Nn → ((m =
0c ∨ ∃x ∈ Nn m = (x
+c 1c)) → ((m +c 1c) =
0c ∨ ∃x ∈ Nn (m +c 1c) =
(x +c
1c)))) |
52 | 26, 30, 34, 38, 42, 44, 51 | finds 4412 |
. 2
⊢ (A ∈ Nn → (A =
0c ∨ ∃x ∈ Nn A = (x
+c 1c))) |
53 | | peano1 4403 |
. . . 4
⊢
0c ∈ Nn |
54 | | eleq1 2413 |
. . . 4
⊢ (A = 0c → (A ∈ Nn ↔ 0c ∈ Nn
)) |
55 | 53, 54 | mpbiri 224 |
. . 3
⊢ (A = 0c → A ∈ Nn ) |
56 | | peano2 4404 |
. . . . 5
⊢ (x ∈ Nn → (x
+c 1c) ∈
Nn ) |
57 | | eleq1 2413 |
. . . . 5
⊢ (A = (x
+c 1c) → (A ∈ Nn ↔ (x
+c 1c) ∈
Nn )) |
58 | 56, 57 | syl5ibrcom 213 |
. . . 4
⊢ (x ∈ Nn → (A =
(x +c
1c) → A ∈ Nn
)) |
59 | 58 | rexlimiv 2733 |
. . 3
⊢ (∃x ∈ Nn A = (x
+c 1c) → A ∈ Nn ) |
60 | 55, 59 | jaoi 368 |
. 2
⊢ ((A = 0c
∨ ∃x ∈ Nn A = (x +c 1c)) →
A ∈ Nn ) |
61 | 52, 60 | impbii 180 |
1
⊢ (A ∈ Nn ↔ (A =
0c ∨ ∃x ∈ Nn A = (x
+c 1c))) |