NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  0fin GIF version

Theorem 0fin 4424
Description: The empty set is finite. (Contributed by SF, 19-Jan-2015.)
Assertion
Ref Expression
0fin Fin

Proof of Theorem 0fin
StepHypRef Expression
1 peano1 4403 . . 3 0c Nn
2 eqid 2353 . . . 4 =
3 el0c 4422 . . . 4 ( 0c = )
42, 3mpbir 200 . . 3 0c
5 eleq2 2414 . . . 4 (n = 0c → ( n 0c))
65rspcev 2956 . . 3 ((0c Nn 0c) → n Nn n)
71, 4, 6mp2an 653 . 2 n Nn n
8 elfin 4421 . 2 ( Finn Nn n)
97, 8mpbir 200 1 Fin
Colors of variables: wff setvar class
Syntax hints:   = wceq 1642   wcel 1710  wrex 2616  c0 3551   Nn cnnc 4374  0cc0c 4375   Fin cfin 4377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-sn 3742  df-uni 3893  df-int 3928  df-0c 4378  df-nnc 4380  df-fin 4381
This theorem is referenced by:  snfi  4432  ssfin  4471  nchoicelem18  6307
  Copyright terms: Public domain W3C validator