Step | Hyp | Ref
| Expression |
1 | | snex 4112 |
. . . 4
⊢ {{A}} ∈
V |
2 | | opkex 4114 |
. . . 4
⊢ ⟪B, C⟫
∈ V |
3 | | opkelins2kg 4252 |
. . . 4
⊢ (({{A}} ∈ V ∧ ⟪B,
C⟫ ∈ V) → (⟪{{A}}, ⟪B,
C⟫⟫ ∈ Ins2k D ↔ ∃x∃y∃z({{A}} = {{x}}
∧ ⟪B, C⟫ =
⟪y, z⟫ ∧
⟪x, z⟫ ∈
D))) |
4 | 1, 2, 3 | mp2an 653 |
. . 3
⊢ (⟪{{A}}, ⟪B,
C⟫⟫ ∈ Ins2k D ↔ ∃x∃y∃z({{A}} = {{x}}
∧ ⟪B, C⟫ =
⟪y, z⟫ ∧
⟪x, z⟫ ∈
D)) |
5 | | 3anass 938 |
. . . . . . 7
⊢ (({{A}} = {{x}}
∧ ⟪B, C⟫ =
⟪y, z⟫ ∧
⟪x, z⟫ ∈
D) ↔ ({{A}} = {{x}}
∧ (⟪B, C⟫ =
⟪y, z⟫ ∧
⟪x, z⟫ ∈
D))) |
6 | | eqcom 2355 |
. . . . . . . . 9
⊢ ({{A}} = {{x}}
↔ {{x}} = {{A}}) |
7 | | snex 4112 |
. . . . . . . . . . 11
⊢ {x} ∈
V |
8 | 7 | sneqb 3877 |
. . . . . . . . . 10
⊢ ({{x}} = {{A}}
↔ {x} = {A}) |
9 | | vex 2863 |
. . . . . . . . . . 11
⊢ x ∈
V |
10 | 9 | sneqb 3877 |
. . . . . . . . . 10
⊢ ({x} = {A} ↔
x = A) |
11 | 8, 10 | bitri 240 |
. . . . . . . . 9
⊢ ({{x}} = {{A}}
↔ x = A) |
12 | 6, 11 | bitri 240 |
. . . . . . . 8
⊢ ({{A}} = {{x}}
↔ x = A) |
13 | 12 | anbi1i 676 |
. . . . . . 7
⊢ (({{A}} = {{x}}
∧ (⟪B, C⟫ =
⟪y, z⟫ ∧
⟪x, z⟫ ∈
D)) ↔ (x = A ∧ (⟪B,
C⟫ = ⟪y, z⟫
∧ ⟪x, z⟫
∈ D))) |
14 | 5, 13 | bitri 240 |
. . . . . 6
⊢ (({{A}} = {{x}}
∧ ⟪B, C⟫ =
⟪y, z⟫ ∧
⟪x, z⟫ ∈
D) ↔ (x = A ∧ (⟪B,
C⟫ = ⟪y, z⟫
∧ ⟪x, z⟫
∈ D))) |
15 | 14 | 2exbii 1583 |
. . . . 5
⊢ (∃y∃z({{A}} = {{x}}
∧ ⟪B, C⟫ =
⟪y, z⟫ ∧
⟪x, z⟫ ∈
D) ↔ ∃y∃z(x = A ∧ (⟪B,
C⟫ = ⟪y, z⟫
∧ ⟪x, z⟫
∈ D))) |
16 | | 19.42vv 1907 |
. . . . 5
⊢ (∃y∃z(x = A ∧ (⟪B,
C⟫ = ⟪y, z⟫
∧ ⟪x, z⟫
∈ D))
↔ (x = A ∧ ∃y∃z(⟪B,
C⟫ = ⟪y, z⟫
∧ ⟪x, z⟫
∈ D))) |
17 | 15, 16 | bitri 240 |
. . . 4
⊢ (∃y∃z({{A}} = {{x}}
∧ ⟪B, C⟫ =
⟪y, z⟫ ∧
⟪x, z⟫ ∈
D) ↔ (x = A ∧ ∃y∃z(⟪B,
C⟫ = ⟪y, z⟫
∧ ⟪x, z⟫
∈ D))) |
18 | 17 | exbii 1582 |
. . 3
⊢ (∃x∃y∃z({{A}} = {{x}}
∧ ⟪B, C⟫ =
⟪y, z⟫ ∧
⟪x, z⟫ ∈
D) ↔ ∃x(x = A ∧ ∃y∃z(⟪B,
C⟫ = ⟪y, z⟫
∧ ⟪x, z⟫
∈ D))) |
19 | 4, 18 | bitri 240 |
. 2
⊢ (⟪{{A}}, ⟪B,
C⟫⟫ ∈ Ins2k D ↔ ∃x(x = A ∧ ∃y∃z(⟪B,
C⟫ = ⟪y, z⟫
∧ ⟪x, z⟫
∈ D))) |
20 | | opkeq1 4060 |
. . . . . . . 8
⊢ (x = A →
⟪x, z⟫ = ⟪A, z⟫) |
21 | 20 | eleq1d 2419 |
. . . . . . 7
⊢ (x = A →
(⟪x, z⟫ ∈
D ↔ ⟪A, z⟫
∈ D)) |
22 | 21 | anbi2d 684 |
. . . . . 6
⊢ (x = A →
((⟪B, C⟫ = ⟪y, z⟫
∧ ⟪x, z⟫
∈ D)
↔ (⟪B, C⟫ = ⟪y, z⟫
∧ ⟪A, z⟫
∈ D))) |
23 | 22 | 2exbidv 1628 |
. . . . 5
⊢ (x = A →
(∃y∃z(⟪B,
C⟫ = ⟪y, z⟫
∧ ⟪x, z⟫
∈ D)
↔ ∃y∃z(⟪B,
C⟫ = ⟪y, z⟫
∧ ⟪A, z⟫
∈ D))) |
24 | 23 | ceqsexgv 2972 |
. . . 4
⊢ (A ∈ V → (∃x(x = A ∧ ∃y∃z(⟪B,
C⟫ = ⟪y, z⟫
∧ ⟪x, z⟫
∈ D))
↔ ∃y∃z(⟪B,
C⟫ = ⟪y, z⟫
∧ ⟪A, z⟫
∈ D))) |
25 | 24 | 3ad2ant1 976 |
. . 3
⊢ ((A ∈ V ∧ B ∈ W ∧ C ∈ T) → (∃x(x = A ∧ ∃y∃z(⟪B,
C⟫ = ⟪y, z⟫
∧ ⟪x, z⟫
∈ D))
↔ ∃y∃z(⟪B,
C⟫ = ⟪y, z⟫
∧ ⟪A, z⟫
∈ D))) |
26 | | eqcom 2355 |
. . . . . . . . . 10
⊢ (⟪B, C⟫ =
⟪y, z⟫ ↔ ⟪y, z⟫ =
⟪B, C⟫) |
27 | | vex 2863 |
. . . . . . . . . . 11
⊢ y ∈
V |
28 | | vex 2863 |
. . . . . . . . . . 11
⊢ z ∈
V |
29 | | opkthg 4132 |
. . . . . . . . . . 11
⊢ ((y ∈ V ∧ z ∈ V ∧ C ∈ T) → (⟪y, z⟫ =
⟪B, C⟫ ↔ (y = B ∧ z = C))) |
30 | 27, 28, 29 | mp3an12 1267 |
. . . . . . . . . 10
⊢ (C ∈ T → (⟪y, z⟫ =
⟪B, C⟫ ↔ (y = B ∧ z = C))) |
31 | 26, 30 | syl5bb 248 |
. . . . . . . . 9
⊢ (C ∈ T → (⟪B, C⟫ =
⟪y, z⟫ ↔ (y = B ∧ z = C))) |
32 | 31 | anbi1d 685 |
. . . . . . . 8
⊢ (C ∈ T → ((⟪B, C⟫ =
⟪y, z⟫ ∧
⟪A, z⟫ ∈
D) ↔ ((y = B ∧ z = C) ∧
⟪A, z⟫ ∈
D))) |
33 | 32 | 2exbidv 1628 |
. . . . . . 7
⊢ (C ∈ T → (∃y∃z(⟪B,
C⟫ = ⟪y, z⟫
∧ ⟪A, z⟫
∈ D)
↔ ∃y∃z((y = B ∧ z = C) ∧ ⟪A,
z⟫ ∈ D))) |
34 | | anass 630 |
. . . . . . . . . 10
⊢ (((y = B ∧ z = C) ∧
⟪A, z⟫ ∈
D) ↔ (y = B ∧ (z = C ∧
⟪A, z⟫ ∈
D))) |
35 | 34 | exbii 1582 |
. . . . . . . . 9
⊢ (∃z((y = B ∧ z = C) ∧
⟪A, z⟫ ∈
D) ↔ ∃z(y = B ∧ (z = C ∧
⟪A, z⟫ ∈
D))) |
36 | | 19.42v 1905 |
. . . . . . . . 9
⊢ (∃z(y = B ∧ (z = C ∧
⟪A, z⟫ ∈
D)) ↔ (y = B ∧ ∃z(z = C ∧
⟪A, z⟫ ∈
D))) |
37 | 35, 36 | bitri 240 |
. . . . . . . 8
⊢ (∃z((y = B ∧ z = C) ∧
⟪A, z⟫ ∈
D) ↔ (y = B ∧ ∃z(z = C ∧
⟪A, z⟫ ∈
D))) |
38 | 37 | exbii 1582 |
. . . . . . 7
⊢ (∃y∃z((y = B ∧ z = C) ∧
⟪A, z⟫ ∈
D) ↔ ∃y(y = B ∧ ∃z(z = C ∧
⟪A, z⟫ ∈
D))) |
39 | 33, 38 | syl6bb 252 |
. . . . . 6
⊢ (C ∈ T → (∃y∃z(⟪B,
C⟫ = ⟪y, z⟫
∧ ⟪A, z⟫
∈ D)
↔ ∃y(y = B ∧ ∃z(z = C ∧ ⟪A,
z⟫ ∈ D)))) |
40 | 39 | adantl 452 |
. . . . 5
⊢ ((B ∈ W ∧ C ∈ T) → (∃y∃z(⟪B,
C⟫ = ⟪y, z⟫
∧ ⟪A, z⟫
∈ D)
↔ ∃y(y = B ∧ ∃z(z = C ∧ ⟪A,
z⟫ ∈ D)))) |
41 | | biidd 228 |
. . . . . . 7
⊢ (y = B →
(∃z(z = C ∧
⟪A, z⟫ ∈
D) ↔ ∃z(z = C ∧ ⟪A,
z⟫ ∈ D))) |
42 | 41 | ceqsexgv 2972 |
. . . . . 6
⊢ (B ∈ W → (∃y(y = B ∧ ∃z(z = C ∧
⟪A, z⟫ ∈
D)) ↔ ∃z(z = C ∧ ⟪A,
z⟫ ∈ D))) |
43 | | opkeq2 4061 |
. . . . . . . 8
⊢ (z = C →
⟪A, z⟫ = ⟪A, C⟫) |
44 | 43 | eleq1d 2419 |
. . . . . . 7
⊢ (z = C →
(⟪A, z⟫ ∈
D ↔ ⟪A, C⟫
∈ D)) |
45 | 44 | ceqsexgv 2972 |
. . . . . 6
⊢ (C ∈ T → (∃z(z = C ∧ ⟪A,
z⟫ ∈ D) ↔
⟪A, C⟫ ∈
D)) |
46 | 42, 45 | sylan9bb 680 |
. . . . 5
⊢ ((B ∈ W ∧ C ∈ T) → (∃y(y = B ∧ ∃z(z = C ∧
⟪A, z⟫ ∈
D)) ↔ ⟪A, C⟫
∈ D)) |
47 | 40, 46 | bitrd 244 |
. . . 4
⊢ ((B ∈ W ∧ C ∈ T) → (∃y∃z(⟪B,
C⟫ = ⟪y, z⟫
∧ ⟪A, z⟫
∈ D)
↔ ⟪A, C⟫ ∈
D)) |
48 | 47 | 3adant1 973 |
. . 3
⊢ ((A ∈ V ∧ B ∈ W ∧ C ∈ T) → (∃y∃z(⟪B,
C⟫ = ⟪y, z⟫
∧ ⟪A, z⟫
∈ D)
↔ ⟪A, C⟫ ∈
D)) |
49 | 25, 48 | bitrd 244 |
. 2
⊢ ((A ∈ V ∧ B ∈ W ∧ C ∈ T) → (∃x(x = A ∧ ∃y∃z(⟪B,
C⟫ = ⟪y, z⟫
∧ ⟪x, z⟫
∈ D))
↔ ⟪A, C⟫ ∈
D)) |
50 | 19, 49 | syl5bb 248 |
1
⊢ ((A ∈ V ∧ B ∈ W ∧ C ∈ T) → (⟪{{A}}, ⟪B,
C⟫⟫ ∈ Ins2k D ↔ ⟪A, C⟫
∈ D)) |