New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > fvmptf | GIF version |
Description: Value of a function given by an ordered-pair class abstraction. This version of fvmptg 5698 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Nov-2005.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
fvmptf.1 | ⊢ ℲxA |
fvmptf.2 | ⊢ ℲxC |
fvmptf.3 | ⊢ (x = A → B = C) |
fvmptf.4 | ⊢ F = (x ∈ D ↦ B) |
Ref | Expression |
---|---|
fvmptf | ⊢ ((A ∈ D ∧ C ∈ V) → (F ‘A) = C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2867 | . . 3 ⊢ (C ∈ V → C ∈ V) | |
2 | fvmptf.1 | . . . 4 ⊢ ℲxA | |
3 | fvmptf.2 | . . . . . 6 ⊢ ℲxC | |
4 | 3 | nfel1 2499 | . . . . 5 ⊢ Ⅎx C ∈ V |
5 | fvmptf.4 | . . . . . . . 8 ⊢ F = (x ∈ D ↦ B) | |
6 | nfmpt1 5672 | . . . . . . . 8 ⊢ Ⅎx(x ∈ D ↦ B) | |
7 | 5, 6 | nfcxfr 2486 | . . . . . . 7 ⊢ ℲxF |
8 | 7, 2 | nffv 5334 | . . . . . 6 ⊢ Ⅎx(F ‘A) |
9 | 8, 3 | nfeq 2496 | . . . . 5 ⊢ Ⅎx(F ‘A) = C |
10 | 4, 9 | nfim 1813 | . . . 4 ⊢ Ⅎx(C ∈ V → (F ‘A) = C) |
11 | fvmptf.3 | . . . . . 6 ⊢ (x = A → B = C) | |
12 | 11 | eleq1d 2419 | . . . . 5 ⊢ (x = A → (B ∈ V ↔ C ∈ V)) |
13 | fveq2 5328 | . . . . . 6 ⊢ (x = A → (F ‘x) = (F ‘A)) | |
14 | 13, 11 | eqeq12d 2367 | . . . . 5 ⊢ (x = A → ((F ‘x) = B ↔ (F ‘A) = C)) |
15 | 12, 14 | imbi12d 311 | . . . 4 ⊢ (x = A → ((B ∈ V → (F ‘x) = B) ↔ (C ∈ V → (F ‘A) = C))) |
16 | 5 | fvmpt2 5704 | . . . . 5 ⊢ ((x ∈ D ∧ B ∈ V) → (F ‘x) = B) |
17 | 16 | ex 423 | . . . 4 ⊢ (x ∈ D → (B ∈ V → (F ‘x) = B)) |
18 | 2, 10, 15, 17 | vtoclgaf 2919 | . . 3 ⊢ (A ∈ D → (C ∈ V → (F ‘A) = C)) |
19 | 1, 18 | syl5 28 | . 2 ⊢ (A ∈ D → (C ∈ V → (F ‘A) = C)) |
20 | 19 | imp 418 | 1 ⊢ ((A ∈ D ∧ C ∈ V) → (F ‘A) = C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 = wceq 1642 ∈ wcel 1710 Ⅎwnfc 2476 Vcvv 2859 ‘cfv 4781 ↦ cmpt 5651 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-csb 3137 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-co 4726 df-ima 4727 df-id 4767 df-cnv 4785 df-rn 4786 df-dm 4787 df-fun 4789 df-fn 4790 df-fv 4795 df-mpt 5652 |
This theorem is referenced by: fvmptnf 5723 |
Copyright terms: Public domain | W3C validator |