New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ov2gf | GIF version |
Description: The value of an operation class abstraction. A version of ovmpt2g 5716 using bound-variable hypotheses. (Contributed by NM, 17-Aug-2006.) (Revised by Mario Carneiro, 19-Dec-2013.) |
Ref | Expression |
---|---|
ov2gf.a | ⊢ ℲxA |
ov2gf.c | ⊢ ℲyA |
ov2gf.d | ⊢ ℲyB |
ov2gf.1 | ⊢ ℲxG |
ov2gf.2 | ⊢ ℲyS |
ov2gf.3 | ⊢ (x = A → R = G) |
ov2gf.4 | ⊢ (y = B → G = S) |
ov2gf.5 | ⊢ F = (x ∈ C, y ∈ D ↦ R) |
Ref | Expression |
---|---|
ov2gf | ⊢ ((A ∈ C ∧ B ∈ D ∧ S ∈ H) → (AFB) = S) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2868 | . . 3 ⊢ (S ∈ H → S ∈ V) | |
2 | ov2gf.a | . . . 4 ⊢ ℲxA | |
3 | ov2gf.c | . . . 4 ⊢ ℲyA | |
4 | ov2gf.d | . . . 4 ⊢ ℲyB | |
5 | ov2gf.1 | . . . . . 6 ⊢ ℲxG | |
6 | 5 | nfel1 2500 | . . . . 5 ⊢ Ⅎx G ∈ V |
7 | ov2gf.5 | . . . . . . . 8 ⊢ F = (x ∈ C, y ∈ D ↦ R) | |
8 | nfmpt21 5674 | . . . . . . . 8 ⊢ Ⅎx(x ∈ C, y ∈ D ↦ R) | |
9 | 7, 8 | nfcxfr 2487 | . . . . . . 7 ⊢ ℲxF |
10 | nfcv 2490 | . . . . . . 7 ⊢ Ⅎxy | |
11 | 2, 9, 10 | nfov 5546 | . . . . . 6 ⊢ Ⅎx(AFy) |
12 | 11, 5 | nfeq 2497 | . . . . 5 ⊢ Ⅎx(AFy) = G |
13 | 6, 12 | nfim 1813 | . . . 4 ⊢ Ⅎx(G ∈ V → (AFy) = G) |
14 | ov2gf.2 | . . . . . 6 ⊢ ℲyS | |
15 | 14 | nfel1 2500 | . . . . 5 ⊢ Ⅎy S ∈ V |
16 | nfmpt22 5675 | . . . . . . . 8 ⊢ Ⅎy(x ∈ C, y ∈ D ↦ R) | |
17 | 7, 16 | nfcxfr 2487 | . . . . . . 7 ⊢ ℲyF |
18 | 3, 17, 4 | nfov 5546 | . . . . . 6 ⊢ Ⅎy(AFB) |
19 | 18, 14 | nfeq 2497 | . . . . 5 ⊢ Ⅎy(AFB) = S |
20 | 15, 19 | nfim 1813 | . . . 4 ⊢ Ⅎy(S ∈ V → (AFB) = S) |
21 | ov2gf.3 | . . . . . 6 ⊢ (x = A → R = G) | |
22 | 21 | eleq1d 2419 | . . . . 5 ⊢ (x = A → (R ∈ V ↔ G ∈ V)) |
23 | oveq1 5531 | . . . . . 6 ⊢ (x = A → (xFy) = (AFy)) | |
24 | 23, 21 | eqeq12d 2367 | . . . . 5 ⊢ (x = A → ((xFy) = R ↔ (AFy) = G)) |
25 | 22, 24 | imbi12d 311 | . . . 4 ⊢ (x = A → ((R ∈ V → (xFy) = R) ↔ (G ∈ V → (AFy) = G))) |
26 | ov2gf.4 | . . . . . 6 ⊢ (y = B → G = S) | |
27 | 26 | eleq1d 2419 | . . . . 5 ⊢ (y = B → (G ∈ V ↔ S ∈ V)) |
28 | oveq2 5532 | . . . . . 6 ⊢ (y = B → (AFy) = (AFB)) | |
29 | 28, 26 | eqeq12d 2367 | . . . . 5 ⊢ (y = B → ((AFy) = G ↔ (AFB) = S)) |
30 | 27, 29 | imbi12d 311 | . . . 4 ⊢ (y = B → ((G ∈ V → (AFy) = G) ↔ (S ∈ V → (AFB) = S))) |
31 | 7 | ovmpt4g 5711 | . . . . 5 ⊢ ((x ∈ C ∧ y ∈ D ∧ R ∈ V) → (xFy) = R) |
32 | 31 | 3expia 1153 | . . . 4 ⊢ ((x ∈ C ∧ y ∈ D) → (R ∈ V → (xFy) = R)) |
33 | 2, 3, 4, 13, 20, 25, 30, 32 | vtocl2gaf 2922 | . . 3 ⊢ ((A ∈ C ∧ B ∈ D) → (S ∈ V → (AFB) = S)) |
34 | 1, 33 | syl5 28 | . 2 ⊢ ((A ∈ C ∧ B ∈ D) → (S ∈ H → (AFB) = S)) |
35 | 34 | 3impia 1148 | 1 ⊢ ((A ∈ C ∧ B ∈ D ∧ S ∈ H) → (AFB) = S) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 = wceq 1642 ∈ wcel 1710 Ⅎwnfc 2477 Vcvv 2860 (class class class)co 5526 ↦ cmpt2 5654 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-co 4727 df-ima 4728 df-id 4768 df-cnv 4786 df-rn 4787 df-dm 4788 df-fun 4790 df-fv 4796 df-ov 5527 df-oprab 5529 df-mpt2 5655 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |