New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > unex | GIF version |
Description: The union of two sets is a set. (Contributed by SF, 12-Jan-2015.) |
Ref | Expression |
---|---|
boolex.1 | ⊢ A ∈ V |
boolex.2 | ⊢ B ∈ V |
Ref | Expression |
---|---|
unex | ⊢ (A ∪ B) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | boolex.1 | . 2 ⊢ A ∈ V | |
2 | boolex.2 | . 2 ⊢ B ∈ V | |
3 | unexg 4102 | . 2 ⊢ ((A ∈ V ∧ B ∈ V) → (A ∪ B) ∈ V) | |
4 | 1, 2, 3 | mp2an 653 | 1 ⊢ (A ∪ B) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1710 Vcvv 2860 ∪ cun 3208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 |
This theorem is referenced by: vvex 4110 prex 4113 addcexlem 4383 eladdc 4399 nnc0suc 4413 addcass 4416 nncaddccl 4420 nnsucelrlem1 4425 nndisjeq 4430 preaddccan2lem1 4455 ltfinex 4465 ltfintrilem1 4466 tfinrelkex 4488 evenfinex 4504 oddfinex 4505 evenoddnnnul 4515 evenodddisjlem1 4516 nnadjoinlem1 4520 nnadjoin 4521 nnadjoinpw 4522 sfindbl 4531 vfinspss 4552 phiexg 4572 opexg 4588 proj1exg 4592 proj2exg 4593 proj2op 4602 phialllem2 4618 setconslem5 4736 1stex 4740 swapex 4743 fncup 5814 cupex 5817 clos1basesuc 5883 connexex 5914 unen 6049 enprmaplem4 6080 ncaddccl 6145 ce0addcnnul 6180 leconnnc 6219 addcdi 6251 nncdiv3lem2 6277 nchoicelem6 6295 nchoicelem16 6305 nchoicelem18 6307 frecxp 6315 |
Copyright terms: Public domain | W3C validator |