NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  unex GIF version

Theorem unex 4107
Description: The union of two sets is a set. (Contributed by SF, 12-Jan-2015.)
Hypotheses
Ref Expression
boolex.1 A V
boolex.2 B V
Assertion
Ref Expression
unex (AB) V

Proof of Theorem unex
StepHypRef Expression
1 boolex.1 . 2 A V
2 boolex.2 . 2 B V
3 unexg 4102 . 2 ((A V B V) → (AB) V)
41, 2, 3mp2an 653 1 (AB) V
Colors of variables: wff setvar class
Syntax hints:   wcel 1710  Vcvv 2860  cun 3208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-un 3215
This theorem is referenced by:  vvex  4110  prex  4113  addcexlem  4383  eladdc  4399  nnc0suc  4413  addcass  4416  nncaddccl  4420  nnsucelrlem1  4425  nndisjeq  4430  preaddccan2lem1  4455  ltfinex  4465  ltfintrilem1  4466  tfinrelkex  4488  evenfinex  4504  oddfinex  4505  evenoddnnnul  4515  evenodddisjlem1  4516  nnadjoinlem1  4520  nnadjoin  4521  nnadjoinpw  4522  sfindbl  4531  vfinspss  4552  phiexg  4572  opexg  4588  proj1exg  4592  proj2exg  4593  proj2op  4602  phialllem2  4618  setconslem5  4736  1stex  4740  swapex  4743  fncup  5814  cupex  5817  clos1basesuc  5883  connexex  5914  unen  6049  enprmaplem4  6080  ncaddccl  6145  ce0addcnnul  6180  leconnnc  6219  addcdi  6251  nncdiv3lem2  6277  nchoicelem6  6295  nchoicelem16  6305  nchoicelem18  6307  frecxp  6315
  Copyright terms: Public domain W3C validator